考点:一元一次不等式的应用;一元一次方程的应用。 专题:应用题。 分析:(1)快餐中所含脂肪质量=快餐总质量×脂肪所占百分比; (2)根据这份快餐总质量为400克,列出方程求解即可;
(3)根据这份快餐中蛋白质和碳水化合物所占百分比的和不高于85%,列出不等式求解即可. 解答:解:(1)400×5%=20克.
答:这份快餐中所含脂肪质量为20克;
(2)设所含矿物质的质量为x克,由题意得: x+4x+20+400×40%=400, ∴x=44, ∴4x=176.
答:所含矿物质的质量为176克;
(3)设所含矿物质的质量为y克,则所含碳水化合物的质量为(380﹣5y)克. ∴4y+(380﹣5y)≤400×85%, ∴y≥40, ∴380﹣5y≤180, ∴所含碳水化合物质量的最大值为180克.
点评:本题由课本例题改编而成(原题为浙教版七年级下P96例题),这使学生对试题有“亲切感”,而且对教学有着积极的导向作用.题中第(3)问是本题的一个亮点,给出两个量的和的范围,求其中一个量的最值,隐含着函数最值思想.本题切入点较多,方法灵活,解题方式多样化,可用不等式解题,也可用极端原理求解,不同的解答反映出思维的不同层次. 24、(2011?温州)如图,在平面直角坐标系中,O是坐标原点,点A的坐标是(﹣4,0),点B的坐标是(0,b)(b>0).P是直线AB上的一个动点,作PC⊥x轴,垂足为C.记点P关于y轴的对称点为P′(点P′不在y轴上),连接PP′,P′A,P′C.设点P的横坐标为a. (1)当b=3时, ①求直线AB的解析式; ②若点P′的坐标是(﹣1,m),求m的值; (2)若点P在第一象限,记直线AB与P′C的交点为D.当P′D:DC=1:3时,求a的值; (3)是否同时存在a,b,使△P′CA为等腰直角三角形?若存在,请求出所有满足要求的a,b的值;若不存在,请说明理由.
11
考点:相似三角形的判定与性质;待定系数法求一次函数解析式;等腰直角三角形。 分析:(1)①利用待定系数法即可求得函数的解析式; ②把(﹣1,m)代入函数解析式即可求得m的值; (2)可以证明△PP′D∽△ACD,根据相似三角形的对应边的比相等,即可求解;
(3)分P在第一,二,三象限,三种情况进行讨论.利用相似三角形的性质即可求解. 解答:解:(1)①设直线AB的解析式为y=kx+3, 把x=﹣4,y=0代入得:﹣4k+3=0, ∴k=,
∴直线的解析式是:y=x+3, ②由已知得点P的坐标是(1,m), ∴m=×1+3=
;
(2)∵PP′∥AC, △PP′D∽△ACD, ∴
=
,即
=,
∴a=;
(3)以下分三种情况讨论. ①当点P在第一象限时, 1)若∠AP′C=90°,P′A=P′C(如图1) 过点P′作P′H⊥x轴于点H. ∴PP′=CH=AH=P′H=AC.
∴2a=(a+4)
∴a=
∵P′H=PC=AC,△ACP∽△AOB
12
∴==,即=,
∴b=2 2)若∠P′AC=90°,P′A=CA 则PP′=AC ∴2a=a+4 ∴a=4 ∵P′A=PC=AC,△ACP∽△AOB ∴=
=1,即=1
∴b=4 3)若∠P′CA=90°, 则点P′,P都在第一象限内,这与条件矛盾. ∴△P′CA不可能是以C为直角顶点的等腰直角三角形. ②当点P在第二象限时,∠P′CA为钝角(如图3),此时△P′CA不可能是等腰直角三角形; ③当P在第三象限时,∠P′CA为钝角(如图4),此时△P′CA不可能是等腰直角三角形. ∴所有满足条件的a,b的值为
或
点评:本题主要考查了梯形的性质,相似三角形的判定和性质以及一次函数的综合应用,要注意的是(3)中,要根据P点的不同位置进行分类求解.
13