河北工程大学毕业论文
AT89C51提供以下标准功能:4K字节闪速存储器,128字节内部RAM,32个I/O口线,看门狗(WDT),两个数据指针,两个16位定时/计数器,一个5向量两级中断结构,一个全双工串行通信口,片内振荡器及时钟电路。同时,AT89S51可降至0HZ的静态逻辑操作,并支持两种软件可选的节电工作模式。空闲方式停止CPU的工作,但允许RAM,定时/计数器,串行通信口及中断系统继续工作。掉电方式保存RAM中到内容,但振荡器停止工作并禁止其它所有工作部件直到下一个硬件复位。
图3-3 河北工程大学毕业论文
引脚功能说明:
Vcc:电源电压 GND:地
P0口:P0口是一组8位漏极开路型双向I/O口,也即地址/数据总线复用口。作为输出口时,每位能驱动8个TTL逻辑门电路,对端口写“1”可作为高阻抗输入端用。
在访问外部数据存储器或程序存储器时,这组口线分时转换地址(低8位)和数据总线复用,在访问期间激活内部上拉电阻。
在Flash编程时,P0口接收指令字节,而在程序校验时,输出指令字节,校验时,要求外接上拉电阻。
P1口:P1是一个带内部上拉电阻的8位双向I/O口,P1的输出缓冲级可驱动(吸收或输出电流)4个TTL逻辑门电路。对端口写“1”,通过内部的上拉电阻把端口拉到高电平,此时可作为输入口。作输入口使用时,因为内部存在上拉电阻,某个引脚被外部信号拉低时会输出一个电流(IIL)。
Flash编程和程序校验期间,P1接收低8位地址。
P2口:P2口是一个带有内部上拉电阻的8位双向I/O口,P2的输出缓冲级可驱动(吸收或输出电流)4个TTL逻辑门电路。对端口写“1”,通过内部的上拉电阻把端口拉到高电平,此时可作输出口,作输入口使用时,因为内部存在上拉电阻,某个引脚被外部信号拉低时会输出一个电流(IIL)。
在访问外部程序存储器或16位地址的外部数据存储器(例如执行MOVE @DPTR指令)时,P2口送出高8位地址数据。在访问8位地址的外部数据存储器(如执行MOVX @Ri指令)时,P2口线上的内容(也即特殊功能寄存器(SFR))区中P2寄存器的内容),在整个访问期间不改变。
Flash编程或校验时,P2亦接收高位地址和其他控制信号。
P3口:P3口是一组带有内部上拉电阻的8位双向I/O口。P3口输出缓冲级可驱动(吸收或输出电流)4个TTL逻辑门电路。对P3口写入“1”时,它们被内部上拉电阻拉高并可作为输出端口。作输入端时,被外部拉低的P3口将用上拉电阻输出电流(IIL)。
P3口除了作为一般的I/O口线外,更重要的用途是它的第二功能,如下表所示:P3口还接手一些用于Flash闪速存储器编程和程序校验的控制信号。
河北工程大学毕业论文
RST:复位输入。当振荡器工作时,RST引脚出现两个机器周期以上高电平将使单片机复位。WDT溢出将使该引脚输出高电平,设置SFR AUXR的DISRTO位(地址8EH)可打开或关闭该功能。DISRTO位缺省为RESET输出高电平打开状态。
ALE/~PROG:当访问外部程序存储器或数据存储器时,ALE(地址所存允许)输出脉冲用于所存地址的低8位字节。即使不访问外部存储器,ALE仍以时钟振荡频率的1/6输出固定的正脉冲信号,因此它可对外输出时钟或用于定时目的。要注意的是:每当访问外部数据存储器时将跳过一个ALE脉冲。
对Flash存储器编程期间,该引脚还用于输入编程脉冲(~PROG)。 如有必要,可通过对特殊功能寄存器(SFR)区中的8EH单元的D0位置位,可禁止ALE操作。该位置位后,只有一条MOVX和MOVC指令ALE 才会被激活。此外,该引脚会被微弱拉高,单片机执行外部程序时,应设置ALE无效。
~PSEN:程序储存允许(~PSEN)输出是外部程序存储器的选通信号,当AT89S51由外部程序存储器取指令(或数据)时,每个机器周期两次~PSEN有效,即输出两个脉冲。当访问外部数据存储器,没有两次有效的~PSEN信号。
EA/VPP:外部访问允许。欲使CPU仅访问外部程序存储器(地址为0000H---FFFFH),EA端必须保持低电平(接地)。需要注意的是:如果加密位LB1被编程,复位时内部会所存EA端状态。
如EA端为高电平(接VCC端),CPU则执行内部程序存储器中的指令。 Flash存储器编程时,该引脚加上+12V的编程电压VPP。 XTAL1:振荡器反相放大器及内部时钟发生器的输入端。 XTAL2:振荡器反相放大器的输出端。 晶体振荡器特性:
河北工程大学毕业论文
AT89C51中有一个用于构成内部振荡器的高增益反相放大器,引脚XTAL1和XTAL2分别是该放大器的输入端和输出端。这个放大器与作为反馈元件的片外石英晶体或陶瓷谐振器一起构成自激振荡器,振荡电路参见图5.
外接石英晶体(或陶瓷谐振器)及电容C1、C2接在放大器的反馈回路中构成并联振荡电路。对外接电容C1、C2虽然没有十分严格的要求,但电容容量的大小会轻微影响振荡频率的高低、振荡器工作的稳定性、起振的难易程度及温度稳定性。如果使用石英晶体,我们推荐使用30pF+/-10pF,而如使用陶瓷谐振器建议选择40pF+/-10PF。
用户也可以采用外部时钟。采用外部时钟的电路如图5右图所示。这种情况下,外部时钟脉冲接到XTAL1端,即内部时钟发生器的输入端,XTAL2端则悬空。
由于外部时钟信号是通过一个2分频触发器后作为内部时钟信号的,所以对外部时钟信号的占空比没有特殊要求,但最小高电平持续时间和最大的低电平持续时间应符合产品技术条件的要求。
晶体接线图和外接时钟线路图,如图3-4所示:
图3-4
空闲节电模式:
在空闲工作模式状态,CPU保持睡眠状态而所有片内的外设仍保持激活状态,这种方式由软件产生。此时,片内RAM和所有特殊功能寄存器的内容保持不变。空闲模式可由任何允许的中断请求或硬件复位终止。
需要注意的是,当由硬件复位来终止空闲工作模式时,CPU通常是从激活空闲模式那条指令的下一条指令开始继续执行程序的,要完成内部复位操作,硬
河北工程大学毕业论文
件复位脉冲要保持两个机器周期(24个时钟周期)有效,在这种情况下,内部禁止CPU访问片内RAM,而允许访问其他端口。为了避免在复位结束时可能对端口产生意外写入,激活空闲模式的那条指令后一条指令不应是一条对端口或外部存储器的写入指令。 掉电模式:
在掉电模式下,振荡器停止工作,进入掉电模式的指令是最后一条被执行的指令,片内RAM和特殊功能寄存器的内容在终止掉电模式前被冻结。退出掉电模式的方法是硬件复位或由处于使能状态的外中断INT0和INT1激活。复位后将重新定义全部特殊功能寄存器但不改变RAM中的内容,在VCC恢复到正常工作电平前,复位应无效,且必须保持一定时间以使振荡器重启动并稳定工作。
序存储器的加密:
AT89C51可使用对芯片上的3个加密位LB1、LB2、LB3进行编程(P)或不编程(U)来得到如下表所示的功能:
注:表中的U------表示未编程 P------表示编程
3.2.1 AT89C51单片机的特点
AT89C51提供以下标准功能:4k 字节FLASH闪速存储器,128字节内部RAM,32个I/O口线,2个16位定时/计数器,一个5向量两级中断结构,一个全双工串行通信口,片内振荡器及时钟电路。同时,AT89C51降至0Hz的静态逻辑操作,并支持两种可选的节电工作模式。空闲方式体制CPU的工作,但允许RAM,定时/计数器,串行通信口及中断系统继续工作。掉电方式保存RAM中的内容,但振荡器体制工作并禁止其他所有不见工作直到下一个硬件复位。