2007年各地中考压轴题汇编(1)(2)

2019-03-22 13:04

∵ S△POE + S梯形PEFA = S△POA + S△AOF, ∴ S梯形PEFA = S△POA = 6 . ∴

18(2?)?(4?m)?6. 2m解得m= 2,m= - 8(舍去) .

∴ P(2,4). 若 m> 4,如图12-4,

∵ S△AOF+ S梯形AFEP = S△AOP + S△POE, ∴ S梯形PEFA = S△POA = 6 . ∴

18(2?)?(m?4)?6, 2m解得m = 8,m = - 2 (舍去) .

∴ P(8,1).

∴ 点P的坐标是P(2,4)或P(8,1).

15、(甘肃陇南)如图,抛物线y?x2?mx?n交x轴于A、B两点,交y轴于点C,点P是它的顶点,

2点A的横坐标是?3,点B的横坐标是1.

(1)求m、n的值; (2)求直线PC的解析式;

(3)请探究以点A为圆心、直径为5的圆与直线

PC的位置关系,并说明理由.(参考数:2?1.41,3?1.73,5?2.24)

1解: (1)由已知条件可知: 抛物线y?x2?mx?n经过A(-3,0)、B(1,0)两点.

29?0??3m?n,??2∴ ? ……………………………………2分

1?0??m?n.??23解得 m?1,n??. ………………………3分

2133 (2) ∵y?x2?x?, ∴ P(-1,-2),C(0,?). …………………4分

222第 6 页 共 10 页

??2??k?b,?13设直线PC的解析式是y?kx?b,则?3 解得k?,b??.

b??.22??213∴ 直线PC的解析式是y?x?. …………………………6分

2213说明:只要求对k?,b??,不写最后一步,不扣分.

22 (3) 如图,过点A作AE⊥PC,垂足为E.

设直线PC与x轴交于点D,则点D的坐标为(3,0). ………………………7分 3在Rt△OCD中,∵ OC=,OD?3,

2∴ CD?()2?32?3235. …………8分 2∵ OA=3,OD?3,∴AD=6. …………9分 ∵ ∠COD=∠AED=90,∠CDO公用, ∴ △COD∽△AED. ……………10分

335OCCD622?∴ , 即. ∴ AE??5. …………………11分

AE6AEAD5o

65?2.688?2.5, 5∴ 以点A为圆心、直径为5的圆与直线PC相离. …………12分 6、(贵阳)如图14,从一个直径是2的圆形铁皮中剪下一个圆心角为90的扇形.

(1)求这个扇形的面积(结果保留?).(3分)

(2)在剩下的三块余料中,能否从第③块余料中剪出一个圆作为底面与此扇形围成一个圆锥?请说明理由.(4分) (3)当?O的半径R(R?0)为任意值时,(2)中的结论是否仍然成立?请说明理由.(5分) 解:(1)连接BC,由勾股定理求得:

······································································ 1分 AB?AC?2 ·① ?A ② n?R21S??? ······································································· 2分

3602(2)连接AO并延长,与弧BC和?O交于E,F,

B ③ O E F C

EF?AF?AE?2?2 ······································································································ 1分

弧BC的长:l?n?R2····························································································· 2分 ?? ·

1802?2?r?2? 2第 7 页 共 10 页

?圆锥的底面直径为:2r?2 ··························································································· 3分 2?2?2?2,?不能在余料③中剪出一个圆作为底面与此扇形围成圆锥. ··············· 4分 2(3)由勾股定理求得:AB?AC?2R

弧BC的长:l?n?R2·························································································· 1分 ??R ·

1802?2?r?2?R 22······················································································ 2分 R ·2?圆锥的底面直径为:2r?EF?AF?AE?2R?2R?(2?2)R

?2?2?2且R?0 22············································································································· 3分 R 2?(2?2)R?即无论半径R为何值,EF?2r ··························································································· 4分 ?不能在余料③中剪出一个圆作为底面与此扇形围成圆锥.

7、(河南)如图,对称轴为直线x=

7的抛物线经过点A(6,0)和B(0,4). 2(1)求抛物线解析式及顶点坐标;

(2)设点E(x,y)是抛物线上一动点,且位于第四象限,四边形OEAF是以OA为对角线的平行四边形,求四边形OEAF的面积S与x之间的函数关系式,并写出自变量x的取值范围;

(3)①当四边形OEAF的面积为24时,请判断OEAF是否为菱形?

②是否存在点E,使四边形OEAF为正方形?若存在,求出点E的坐标;若不存在,请说

明理由.

y 7x=2

B(0,4)

F A(6,0)xO E

第 8 页 共 10 页

8、(湖北黄岗)已知:如图,在平面直角坐标系中,四边形ABCO是菱形,且∠AOC=60°,点B的坐标是(0,83),点P从点C开始以每秒1个单位长度的速度在线段CB上向点B移动,设t(0?t?8)秒后,直线PQ交OB于点D. (1)求∠AOB的度数及线段OA的长;

(2)求经过A,B,C三点的抛物线的解析式; (3)当a?3,OD?y B P C A D 的解析式;

(4)当a为何值时,以O,P,Q,D为顶点的三角形Q 与?OAB相似?当a 为何值时,以O,P,Q,D为顶点的三角形与?OAB不相似?请给出你的结论,并加以

x 证明. O

9、(湖北荆门)如图1,在平面直角坐标系中,有一张矩形纸片OABC,已知O(0,0),A(4,0),C(0,3),点P是OA边上的动点(与点O、A不重合).现将△PAB沿PB翻折,得到△PDB;再在OC边上选取适当的点E,将△POE沿PE翻折,得到△PFE,并使直线PD、PF重合. (1)设P(x,0),E(0,y),求y关于x的函数关系式,并求y的最大值;

(2)如图2,若翻折后点D落在BC边上,求过点P、B、E的抛物线的函数关系式;

(3)在(2)的情况下,在该抛物线上是否存在点Q,使△PEQ是以PE为直角边的直角三角形?若不存在,说明理由;若存在,求出点Q的坐标.

yy解:(1)由已知PB平分∠APD,PE平分∠OPF,且DCCBBPD、PF重合,则∠BPE=90°.∴∠OPE+FD∠APB=90°.又∠APB+∠ABP=90°,EEF∴∠OPE=∠PBA.

OPOAxPAx∴Rt△POE∽Rt△BPA.…………………………

图2 图1 …………………………………………2分 ∴

43时,求t的值及此时直线PQ3x3POBA114.即?.∴y=x(4?x)??x2?x(0<x<4). ?y4?xOEAP333且当x=2时,y有最大值.………………………………………………………………4分 (2)由已知,△PAB、△POE均为等腰三角形,可得P(1,0),E(0,1),B(4,3).……6分

131?a?,?2?c?1,?3??2

设过此三点的抛物线为y=ax+bx+c,则?a?b?c?0,∴?b??,

2?16a?4b?c?3.???c?1.??第 9 页 共 10 页

y=

123x?x?1.……………………………………………………………………………8分 22(3)由(2)知∠EPB=90°,即点Q与点B重合时满足条件.………………………………9分 直线PB为y=x-1,与y轴交于点(0,-1). 将PB向上平移2个单位则过点E(0,1),

∴该直线为y=x+1.………………………………………………………………………10分

?y?x?1,?x?5,?由?得?∴Q(5,6). 123y?x?x?1,?y?6.?22?故该抛物线上存在两点Q(4,3)、(5,6)满足条件.……………………………………12分

y CEMBQDP OHNA x

第 10 页 共 10 页


2007年各地中考压轴题汇编(1)(2).doc 将本文的Word文档下载到电脑 下载失败或者文档不完整,请联系客服人员解决!

下一篇:2功能操作手册 - - 采购业务 - 图文

相关阅读
本类排行
× 注册会员免费下载(下载后可以自由复制和排版)

马上注册会员

注:下载文档有可能“只有目录或者内容不全”等情况,请下载之前注意辨别,如果您已付费且无法下载或内容有问题,请联系我们协助你处理。
微信: QQ: