2015年美赛O奖论文B题Problem_B_32879(3)

2019-03-28 12:28

Team#32879Page11of35

Thiswillde?neq:=b(z,W,A),ortheconditionalprobabilitytobeusedinrevisingthepriorprobabilitymodel.

2.4OptimizationCriteria

Theprimaryobjectiveofourmodelistomaximizethecumulativeprobabilityofsuccessforanygivensearchregion.Thiswillbeaccomplishedthroughminimizingtheposteriorprobabilityp??forsomeregiontobesearched,aslowerposteriorprobabilitycorrelatestoamorethoroughsearchwithinthatregion.Athoroughsearchisrepresentedinourmodelasthemaximizationofq,theprobabilityof?ndingtheplanegiventhatitislocatedwithintheregionsearched.Becauseourinitialmodelproducesaninitialdensitydistributionoveratwo-dimensionalplane,weneedtointegrateoveraspeci?edregionto?ndthetotalprobabilitythatasearchwithinthatregionwillbesuccessful.Mathematically,thisisstatedinEquation15,whereAistheareaoftheregionthathasbeensearched.

????

p(?ndplane|planeisinregion)=q(z?)=maxb(z)dA(15)

z∈R

A

Similarly,throughBayes’Theorem,theprobabilityof?ndingtheplaneintheregionis

theproductoftheprobabilitythatitisintheregionandtheprobabilityof?ndingtheplanegivenitisintheregion.ThisisshowninEquation16.

????

b(z)?p(x,y)dA(16)p(?ndplane)=q(z?)p(x,y)=

A

AsseeninthetheoreticalapplicationofBayes’Theorem,BayesianInferenceisused

tocontinuouslyadjusttheprobabilitiesofadistributionasnewinformationiscollectedandprocessed[9].AsBayesianInferencewillbeusedintheoptimizationofoursearchmethods,wemustincorporatebothqandthechangeofprobabilitywhenagivenregionhasbeenchecked.Essentially,everytimearegionischeckedandtheplaneisnotfoundthere,BayesianInferencewillbeappliedtoreducetheprobabilityoftheplanebeinginthatlocationwhilesimultaneouslyre-normalizingtherestoftheprobabilitydistributiontoaccountforthischange.

AninterestingfacetofBayesianInferenceappearswhenimplementingthismethodacrossalargearea.WhensearchinganareaA,theprobabilityofthatareacontainingtheplaneisreducedbythecorrectfactorandeveryprobabilityoutsideofthatareaisrenormalized.However,thesameresultsareachievedwhentheprobabilitychangeandrenormalizationoccurforanincrementalareadAwithinthelargerareaA.Infact,anentireregionofthedistributioncanbecheckedforasuccessoneincrementalareaelementatatime.Thisisveryapplicablewhentheprocessisimplementedthroughacomputersimulationwhereadistributionismappedtoagridofdiscreteprobabilities.Atwo-dimensionalapplicationofBayesianInferenceisshownbelowinFigure6,wherethemiddlesectionis“searched.”

也许大学四年,我们会一直在迷茫中度过,因为生活总是难以言说。赛氪APP与您相伴!

11

Team#32879

Discrete Application of Bayes TheoremPrior ProbabilityPosterior ProbabilityPage12of35

0.020.0180.0160.014Probability0.0120.010.0080.0060.0040.00202040Index6080100120Figure6:TwoDimensionalExampleofBayesianInference.

Astheprobabilityof?ndingtheplaneatanygivenpointwillcontinuouslychangewitheachsuccessivesearch,theoptimallocationtosearchfortheplanewillchangeoverthecourseofmultipledays.Similarly,theprobabilityof?ndingtheplaneonanygivendaywillchange.Forinstance,overthecourseofmanydaystheprobabilitydistributionwillbemuchmoreuniformasthelocationsofhighprobabilityhavealreadybeenchecked.Meanwhile,thelocationsofinitiallylowprobabilityhavebeenincreasinginrelativeprobabilityduetotherenormalizationprocess.Becauseofthisrenormalization,agivenday’sprobabilityofsuccessisde?nedastheproductofallofthepreviousday’sprobabilitiesoffailurewiththegivenday’sprobabilityofasuccess.ThisprobabilityforsuccessondayN,P(N),isdescribedbelowinEquation17.

P(N)=

N?1??k=1

(1?P(k))?

????

A

b(z)?p(x,y)dA(17)

Theoptimizationofthisprobabilityisnoticeablydependentuponthepathlengthofthe

searchpath,z.Eachofthedi?erenttypesofsearchpathswillhavedi?erentlengths,aseachlengthwillvaryduetotherangeofthesearchplaneandthedistancethesearchplanemusttraveltoreachthesearcharea.Duetothislengthdependence,theareaabletobecovered(andthereforemaximumprobabilitytobechecked)willalsovaryforeachtypeofsearch.Throughsoftwareoptimization,theidealpathlengthforanygivenpathtypeandsearchplanerangewillbedetermined.Asthisisaniterativeprocessoverthecourseofmultipledaysandplanes,newregionstobesearchedanddi?erentsearchpathswillbeoptimizedoverthecourseofeachday.Thedetailsofchosensearchpathsandtheprocessofourmodelsimulationaredetailedbelow.

也许大学四年,我们会一直在迷茫中度过,因为生活总是难以言说。赛氪APP与您相伴!

12

Team#32879Page13of35

3

3.1

ModelImplementationandResults

PriorProbabilityModel:ADiscreteGrid

Inordertomaptheprobabilitydensityfunctionontoamatrixthatcanbeanalyzed,adiscretesquaregridofpointsisde?nedinthe(x,y)-coordinatesystem,witheachgridsectionexactlyonesquaremileinareaforsimplicity.Theboundsofthisgridaredeterminedbasedonrmax,whichisbasedonthepropertiesofthemissingaircraft.Thisyieldsasquaregrid;aninscribedcirclerepresentstheactualsearcharea,butthematrixmustremainsquare.Afterestablishingthissetof(x,y)gridpoints,Equation5,withsubstitutionsfromEquations6and7,isoverlaidonthisgridforeachcorrespondingpoint(x,y)toproducethediscreteinitialprobabilitymassdistribution:

Figure7:Contourmapoftheprobabilitymassdistribution.

Thischoiceofgridsystemwilla?ectlaterderivationsinthemodel,sowewillde?neWtobethelengthofasinglegrid.Thisisalsothelateralsearchrange,andtheoriginofthecoordinatesystemisthepointoflostcontact.Forsimpli?cation,W:=1.WewillalsoadjustEquation16tobeapproximatedoverourgrid:

????

A

p(x,y)dA≈

b??d??i=aj=c

pij

(18)

也许大学四年,我们会一直在迷茫中度过,因为生活总是难以言说。赛氪APP与您相伴!

13

Team#32879Page14of35

wherepijdescribestheprobabilityoftheaircraftbeingateachpointinthegrid,whosexandycoordinatesareindexedoveriandj,respectively.aandbarethexboundsofthedoubleintegralandcanddaretheybounds.Thiswillallowustodoagrid-wisecomputationoftheprobabilitiesusingEquations9and10.

3.2GeneralSearchModelMethods

Inthefollowingsubsections,fourdi?erenttypesofsearchmodelswillbediscussed.Thissectionwilldescribethecommonaspectsofallofthemodelstoavoidredundancyintheexplanations.AllofthemodelsweredevelopedinMATLABbecauseitcatersverynicelytotheprocessofiteratingoverasetofCartesianpoints.

Allofthesimulations,unlessnotedotherwise,arebasedononeC-130searchplanewitharangeof2360miles[10].Someofthesimulationswererunusingadi?erenttypeofsearchaircraftwithadi?erentrange.Ineachcase,theactualdailyrangeoftheaircraftwascalculatedusingthataircraft’scruisespeedanda12-hour?ightlimit.Ifthisrangewaslessthanthemaximumrangetoreachthesearchgriditwasusedastherangeforthecalculations.

Ineachmodel,theoptimalsearchlocationandcorrespondingsearchsizeisdeterminedbycheckingtheprobabilityofsuccessforasearchcenteredateverygridpoint.Thecentralgridpointcorrespondingtothemaximumprobabilityofsuccessde?nestheoptimalsearchlocation.Inordertocalculatethismaximumprobabilityofsuccess,thefollowingstepsarefollowedforeachgridsquare:

1.Determinethedistancetoandfromtherunway(arbitrarilyde?ned400milesSouthofthepointoflostcontact)andusethisvaluetodeterminethepossiblerangeremainingfortheactualsearch.2.Convertthisusablerangeintomaximumdimensionsofthesearcharea.

3.Usingthismaximumsearchareaandtheshapeofthesearchmodel,calculatethetotalprobabilityofsuccessovereachgridpointthatispassedoverinthepath.Theoptimalsearchlocationisthendeterminedbythelocationwiththemaximumprob-abilityofsuccess.Thislocationisthen“searched”inthemodel;theprobabilitiesineachsearchedandun-searchedsquareareadjustedaccordingtoEquations9&10.Thisentireprocessisrepeatedforeachdayofsearching.Theposteriorprobabilityfromdayonebe-comesthepriorprobabilityfordaytwo,andsoon.ThecumulativeprobabilityisdeterminedusingEquation17describedpreviously.Theonlyvariationswithinthemodelforeachtypeofsearchpatternoccurinthecalculationofmaximumsearchareafromusablerange,to-talprobabilityofsuccess,andconditionalprobabilityq.Thesedi?erences,alongwiththeresultsfromeachmodel,arediscussedinthenextsubsections.

也许大学四年,我们会一直在迷茫中度过,因为生活总是难以言说。赛氪APP与您相伴!

14

Team#32879Page15of35

3.3SimpleSquareSearchModel

The?rsttypeofsearchpathwewillconsiderisaparallelsweepofasquarearea.ConsiderapartitionofthegridspaceR,withareaA.Ifrestrictedtothesetofsquares,thisregionRhasacorrespondingsidelengths.Supposethatasearchplanesearchesthisregionwiththe“parallelsweep”searchmethod[11],withalateralsearchrangeofW,allowingittoseetheentiregridsquare:

Figure8:“ParallelSweep”throughasearchsquare.

TheparametersofthissearchprovidealloftheinformationinEquation14,allowingustocomputeq,theconditionalprobabilitythatwe?ndtheaircraft.SinceeachsquarehaslengthW,andareaW2,qforeachofthesesquaresisthesame:1?e?1.

Wenowneedawayto?ndthesizeofapotentialsearchsquarefromacalculatedusablesearchdistance.Weintroducen,thenumberofpassestheplanemakesinthegridspace.s

(19)

W

Thetotaldistanceztraveledinthesearchsquarecanbefoundbytakingnhorizontalpasseswithlength(s?W)(from?gure8),plusadistancesvertically.Thisrelationshipisshownbelow:

n=z=n(s?W)+s

SubstitutingtheexpressionfromEquation19andsolvingfors,wegetthat

s=

√Wz

(21)(20)

Usingthisvalueofscalculatedateachgridpoint,thelargestsquaresearchareacenteredonthatgridpointisdetermined.Thislargestsquareforeachgridpointisusedintheoptimizationdescribedintheprevioussection.After?vedaysofasingleplanesearchwiththismodel,theprobabilitydistributionfunctionisshownbelow:

也许大学四年,我们会一直在迷茫中度过,因为生活总是难以言说。赛氪APP与您相伴!

15


2015年美赛O奖论文B题Problem_B_32879(3).doc 将本文的Word文档下载到电脑 下载失败或者文档不完整,请联系客服人员解决!

下一篇:建筑施工企业三类人员安全生产知识考核复习参考题

相关阅读
本类排行
× 注册会员免费下载(下载后可以自由复制和排版)

马上注册会员

注:下载文档有可能“只有目录或者内容不全”等情况,请下载之前注意辨别,如果您已付费且无法下载或内容有问题,请联系我们协助你处理。
微信: QQ: