2015年美赛O奖论文B题Problem_B_32879(6)

2019-03-28 12:28

Team#32879Page26of35

Figure23:InitialProbabilityDistributionifaStallisMoreLikely.

Eachofthefourmodelswasrunwiththisinitialprobabilitydistribution,yieldingthefollowingresults:0.9Stall Likely Model Comparison - Cumulative Success ProbabilitySimple Square ModelSpiral Square ModelOctagonal Sector ModelRectangular Model0.80.70.6Probability0.50.40.30.20.1002468Search Day101214161820Figure24:ModelComparisonforLikelyStallScenario.

Thesametrendspersistinthismodel:therectangularsearchisthemoste?ectiveandtheoctagonalsectorsearchistheleaste?ective,whilethetwosquarepatternslieinthemiddle.

也许大学四年,我们会一直在迷茫中度过,因为生活总是难以言说。赛氪APP与您相伴!

26

Team#328793.7.4

ShortRangeSearchAircraft

Page27of35

Next,shortrangesearchaircraftareconsidered.InsteadofthebasecaseC-130searchaircraft,aV-22Ospreyisconsidered,whichhasarangeofonly1011miles[13].Forasingleoneoftheseaircraft,thecumulativesuccessprobabilitiesforeachsearchpatternareshownbelow,?rstover20daysandthenzoomedtoshowonlythe?rst?vedays:

0.20.180.160.140.035Small Plane Model Comparison - Cumulative Success ProbabilitySimple Square ModelSpiral Square ModelOctagonal Sector ModelRectangular Model0.05Small Plane Model Comparison - Cumulative Success ProbabilitySimple Square ModelSpiral Square ModelOctagonal Sector ModelRectangular Model0.0450.040.12ProbabilityProbability0.030.10.080.0250.020.060.040.0200.0150.0102468Search Day1012141618200.00511.522.5Search Day33.544.55(a)ComparisonofSearchPatternsforSingleSmallPlaneover20Days.(b)ComparisonofSearchPatternsforSingleSmallPlaneover5Days.

Theseplotsshowseveralinterestingtrends:

?Thecumulativesuccessprobabilityismuchmorelinearthanwhenusinglongerrangesearchaircraft.Thisisbecausethesearchareasaremuchsmaller,sothesearchoneachdaycanbenearlyase?ectiveasthesearchonthepreviousday.

?Foranincreasednumberofdaysthesimplesquaresearchpathisdemonstratedtooutperformallotherpatterns.Inthe?rstfewdays,therectangularsearchisoptimal,butastimecontinues,therectanglesbecomelesse?cientbecauseprecedingrectangularsearcheshavepartitionedtheprobabilitydistributioninawaythatfuturerectangleshavedi?cultycovering.Thisphenomenaseemsstrange,andshouldbeexploredfurtherinfuturedevelopments.

Theresultsfromtheprevioussectionsdescribeafewveryimportanttrendsthatpersistthroughouteachofoursimulationsregardlessoftypeofsearchplane,initialdistribution,ornumberofsearchplanes:

1.Theoptimizedrectangle,simplesquare,andspiralsquareareallrelativelyconsistentandsimilarintheirabilitytomaximizecumulativeprobabilityof?ndingtheplane.2.Theoptimizedrectangleisconsistentlythemostsuccessfulforthelargeplane(largerange)searches,followedcloselybythesimplesquareandspiralsquare,inorderofdecreasingsuccess.Theoctagonalsectorsearchisfarlesse?ective.3.Itisalsousefultonotethatallsearchesdoapproachacumulativeprobabilityof1,suggestingthatgivenenoughtimetheplanewouldinevitablybefound.

也许大学四年,我们会一直在迷茫中度过,因为生活总是难以言说。赛氪APP与您相伴!

27

Team#328793.7.5

ComparisonofVariedSearchPatterns

Page28of35

Wenowmovebeyondthecomparisonofdi?erentsearchpatternsandthedi?erentsearchair-crafttoinvestigatethee?ciencyofdi?erentsearchpatternsbeingemployedsimultaneouslybytwoaircraft.Theplotbelowdisplaysthecumulativeprobabilityofatwoplanesearchovertwentydays.Bothscenariosutilizealongrange(C-130)andashortrange(Osprey)searchplane.Inonescenariobothplanesutilizedthesimplesquaresearchmethod,whileintheotherscenariothelongrangeplaneperformedasimplesquaresearchwhiletheshortrangeplaneperformedanoctagonalsectorsearch.0.9Two Plane Model Comparison - Same vs. Different PatternsTwo Square PathsOne Square and One Octagonal Path0.80.70.6Probability0.50.40.30.20.102468Search Day101214161820Figure26:ComparisonofSameandDi?erentPaths.

Afterobservinghowrelativelyine?ectivetheoctagonalsectorsearchis,itmayseemasurprisingresultthatthecombinationofasquareandsectorsearchisnearlycomparabletothatofbothsquares.Thiscanbeexplainedbyobservingwhatoccurswiththeprobabilitydistributionmodeloverthecourseofmultiplesearchdaysandhoweachsearchpatternworks.Thesimplesquareseeksoutthelargestpossiblesquareofgreatestprobabilitytosearch,whilethesectorpatternlooksforasmallconcentrationofhighprobabilityandbuildsawideperimeteraboutthisconcentrationtosearch.Byusingthesetwopatternsinconjunction,thesquaresearchpatternisabletoreducelargeuniformregions,andthesectorpatternwilltargetregionsofhighprobabilitybutsmallarea.Thus,usingtwosquaresearchpathsisstillpreferabletoonesquarepathandoneoctagonalsectorpath,butonlyslightly.Thisisour?rstattemptattestingcombinationsofsearchpaths;inthefuture,wewouldliketotestmorecombinationsusingdi?erentquantitiesandtypesofaircraft.

也许大学四年,我们会一直在迷茫中度过,因为生活总是难以言说。赛氪APP与您相伴!

28

Team#328793.7.6

TheE?ectivenessParameter

Page29of35

Afteranalyzingthevariouscombinationsofsearchplanerangesandsearchpatterns,weintroducedanotherparametertocreateamorerobustmodel:thee?ectivenessparameter.This“e?ectivenessparameter”isusefulinmodifyingthesimulationtomorepreciselymodelarealisticscenario.Thee?ectivenessparameterλisde?nedbelowinEquation26astheproductoftwootherparameterswhicharedeterminedbythespeci?csearch.

λ=α?β

(26)

Theαparameter,avaluecenteredaround1,describestheeaseof?ndingalostplane.Forinstance,amissingplanesuchasthelargeBoeing747wouldhavealargerαthanaCessnabecauseitistheoreticallyeasierto?nd.Theβparameter,alsocenteredaround1,describesthee?ectivenessofthesearchaircraft.Forinstance,asmallplanewithasinglesearcherperformingavisualscanforsignsofthelostplanewouldhavealowerβvaluethanaC-130Herculesequippedwithmultipleobserversandelectronicsensorssuchassonarandinfra-reddetection.

Usingthede?nitionofλ,wecanre-deriveamodi?cationofEquation14.Becauseλrepresentshowwellanareaissearched,thismodi?esEquation11:

λWh

(27)

A

Thehigherthevalueofλis,themorelikelytheplanecouldbefoundinthatincrementalarea.Wethenplugthisexpressionforg(h)backintoEquation12toget

g(h)=

λW

(28)

A

Thesolutiontothisdi?erentialequationisnodi?erentthanfrombefore,exceptthattheexponentnowcontainsthee?ectivenessparameter:

b??(z)=[1?b(z)]q=1?e

?λzWA(29)

Inessence,wehavebeenusingane?ectivenessparameterofoneforalloftheprecedingmodels.

也许大学四年,我们会一直在迷茫中度过,因为生活总是难以言说。赛氪APP与您相伴!

29

Team#32879Page30of35

Theplotbelowshowstheresultofdoublingthee?ectivenessparameterbetweentwosquaresearcheswhereeveryotherparameterisheldconstant:

1Effectiveness Model Comparison - Cumulative Success ProbabilityUnit Effectiveness Square SearchDouble Effectiveness Square Search0.90.80.7Probability0.60.50.40.30.20.102468Search Day101214161820Figure27:ComparisonofDi?eringE?ectivenessParameters.

Thisillustratesthefollowingresultsfordoublingthee?ectivenessparameter:

?Thereisanoticeableincreaseofcumulativeprobabilityoverthecourseofa20daysearch.

?Thegreatere?ectivenessparameterdoesnotfullydoublethecumulativeprobabilityofthesearchwithlowere?ciency.

Theseresultsareconsistentwithwhatwouldbeexpected.TheLawofDiminishingReturnsstatesthatifonlyonefactorisincreasedcontinually,thereturnratewilldecreaseovertimeduetotheincrementalincreaseofthisfactor[8].AsshownaboveinEquation29,qdecreasesnon-linearlywithanincreaseofzorλ.Thismeansthatthelongerthepath(orthelongerthesearchduration),thelessprobabilityofsuccesswillbeaccumulatedonanygivendayofsearching.

Tomodelarealworldapplicationofthee?ectivenessparameter,weconsiderthedisap-pearanceofa747vs.thedisappearanceofaCessna172.TheCessnahasacruisealtitudeofonly13000ftandalift-to-dragratioof7.5[14].Thisnotonlychangesthee?ectivenessparameter,butalsotheinitialprobabilitydistribution.Ane?ectivenessparameterof1isusedforthe747searchand0.5isusedfortheCessnasearch,basedonthehypothesisthataCessnawouldbeabouttwiceashardforsearcherstosee.Thecumulativeprobabilityofsuccessforbothofthesecasesisshownbelow:

也许大学四年,我们会一直在迷茫中度过,因为生活总是难以言说。赛氪APP与您相伴!

30


2015年美赛O奖论文B题Problem_B_32879(6).doc 将本文的Word文档下载到电脑 下载失败或者文档不完整,请联系客服人员解决!

下一篇:建筑施工企业三类人员安全生产知识考核复习参考题

相关阅读
本类排行
× 注册会员免费下载(下载后可以自由复制和排版)

马上注册会员

注:下载文档有可能“只有目录或者内容不全”等情况,请下载之前注意辨别,如果您已付费且无法下载或内容有问题,请联系我们协助你处理。
微信: QQ: