∵kPT9k2?149?k24??222k?1k2?1559k?1k?9??,kMT??, 18k18k10k10k?29k2?1k?9∴kPT?kMT,∴P、M、T三点共线,即直线PM经过点T,
综上所述,直线PM经过定点T(0,). ··························································· 10分
452k?x?,2??y?kx?1,?x?0,2kk2?1?1?k,2), ②由?2得?或?∴A(2221?kk?1?x?y?1,?y?k?1,?y??1,?k2?1?k2?1x, 则直线AB:y?2k4k2?1设t?,则t?R,直线PM:y?tx?,直线AB:y?5tx,
510k ································································································································· 13分 假设存在圆心为(m,0),半径为
32的圆G,使得直线PM和直线AB都与圆G相交, 53?|5tm|?2,(i)?251?25t?181818?222i25t(m?)?m? t?R则?由()得对恒成立,则,4252525|mt?|?5?32,(ii)?25??1?t182822)t?mt??0对t?R恒成立, 由(ii)得,(m?25525181882182222)(?)?0,得当m?时,不合题意;当m?时,??(m)?4(m?252552525m2?222,即?, ?m?2555∴存在圆心为(m,0),半径为
32的圆G,使得直线PM和直线AB都与圆G相交,5所有m的取值集合为(?222,). ·········································································· 16分 552解法二:圆G:(x?m)?y?
18442182,由上知PM过定点(0,),故m?()?;又2555256
直线AB过原点,故G:m?0?20.(本小题满分16分) 已知函数f(x)?ax?221822,从而得m?(?,). 25552?6,其中a为实常数. x(1)若f(x)?3x在(1,??)上恒成立,求a的取值范围; (2)已知a?3,P1,P2是函数f(x)图象上两点,若在点P1,P2处的两条切线相互平行,4求这两条切线间距离的最大值;
(3)设定义在区间D上的函数y?s(x)在点P(x0,y0)处的切线方程为l:y?t(x),当
x?x0时,若
s(x)?t(x).试?0在D上恒成立,则称点P为函数y?s(x)的“好点”
x?x0问函数g(x)?x2f(x)是否存在“好点”.若存在,请求出所有“好点”坐标,若不存在,请说明理由.
20、解:(1)方法一:f(x)?3x在(1,??)上恒成立,即为(a?3)x2?6x?2?0在(1,??)上恒成立,
①a?3时,结论成立; ②a?3时,
函数h(x)?(a?3)x?6x?2图象的对称轴为x??26?0,
2(a?3)所以函数h(x)?(a?3)x?6x?2在(1,??)单调递增, 依题意h(1)?0,即a??5, 所以a?3;
③a?3不合要求,
综上可得,实数a的取值范围是a?3. ···························································· 4分 方法二:f(x)?3x在(1,??)上恒成立等价于a??226??3, 2xx26?13?15令h?x???2??3??2????
xx2?x2?因为x?1,所以0?所以a?3.
21?1,故?5?h?x??3 x 7
(2)f'(x)?32? 4x2设P1(x1,y1),P2(x2,y2),过点P1,P2的两切线互相平行, 则
3232,或x1??x2, ?2??2,所以x1?x2(舍去)
4x14x2过点P1的切线l1:y?y1?f'(x1)(x?x1),即f'(x1)x?y?f(x1)?x1f'(x1)?0, ··································································································································· 6分 过点P2的切线l2:f'(x2)x?y?f(x2)?x2f'(x2)?0 两平行线间的距离是d?|f(x1)?f(x2)?x1f'(x1)?x2f'(x2)|1?[f'(x 1)]22|(3x23281??4x)?x1(4?x2)|11?|x1|?8, 1?(34?225342524x2)2?2?4x1?2?3116x1x116x1因为
2516x24252481?x2?2x1?x2?5,所以d??42 11615?3即两平行切线间的最大距离是42. ································································ 10分 (3)g(x)?x2f(x)?ax3?6x2?2x,设g(x)存在“好点”P(x0,y0),
由g'(x)?3ax2?12x?2,得h(x)?g'(x0)(x?x0)?g(x0), 依题意
g(x)?h(x)x?x?0对任意x?x0恒成立,
0因为
g(x)?[g'(x0)(x?x0)?g(x0)]x?x?[g(x)?g(x0)]?g'(x0)(x?x0), 0x?x0?[(ax3?6x2?2x)?(ax3220?6x0?2x0)]?(3ax0?12x0?2)(x?x0)x?x 0?[a(x2?x26(x?x20x?x0)?0)?2]?(3ax0?12x0?2)
?ax2?(ax20?6)x?(2ax0?6x0), ·································································· 13分 所以ax2?(ax20?6)x?(2ax0?6x0)?0对任意x?x0恒成立,
①若a?0,ax2?(ax20?6)x?(2ax0?6x0)?0不可能对任意x?x0恒成立,
8
即a?0时,不存在“好点”;
2②若a?0,因为当x?x0时,ax2?(ax0?6)x?(2ax0?6x0)?0, 2要使ax2?(ax0?6)x?(2ax0?6x0)?0对任意x?x0恒成立, 2必须??(ax0?6)2?4a(2ax0?6x0)?0
(ax0?2)2?0,所以x0??2, a综上可得,当a?0时,不存在“好点”;
216?4a,). 2aa20. 解: (Ⅰ)当a?1时,f2(x)?|3x?9|.
当a?0时,存在惟一“好点”为(?且f1(x)?f2(x)?2?3x?10?2?3log35
因为当x?(0,log35)时,f1(x)?3x?1,f2(x)?9?3x,
?10?2?5?10?0,
所以当x?(0,log35)时,f(x)?3?1,且1?(0,log35) 由于f?(x)?3xln3,所以k?f?(1)?3ln3,又f(1)?2, 故所求切线方程为y?2?(3ln3)(x?1), 即(3ln3)x?y?2?3ln3?0 (Ⅱ) 因为2?a?9,所以0?log3① 当x?log3x99?log3,则 a29xx时,因为a?3?9?0,3?1?0, a8, a?1所以由f2(x)?f1(x)?(a?3x?9)?(3x?1)?(a?1)3x?8?0,解得x?log398?x?log3时,f(x)?f2(x) aa?19xx② 当0?x?log3时,因为a?3?9?0,3?1?0,
a从而当log3所以由f2(x)?f1(x)?(9?a?3x)?(3x?1)?10?(a?1)3x?0,解得x?log310, a?1109?x?log3时,f(x)?f2(x) a?1a③ 当x?0时,因为f2(x)?f1(x)?(9?a?3x)?(1?3x)?8?(a?1)3x?0,
从而当log3 从而f(x)?f2(x) 一定不成立
108,log3]时,f(x)?f2(x), a?1a?181042?log3?log3[(1?)] 故l?log3a?1a?15a?1综上得,当且仅当x?[log3
从而当a?2时,l取得最大值为log312 5
9
(Ⅲ)“当x??2,???时,f(x)?f2(x)”等价于“f2(x)?f1(x)对x??2,???恒成立”,即“|a?3x?9|?|3x?1|?3x?1(*)对x??2,???恒成立”
9log39x① 当a?1时,log3?2,则当x?2时,a?3?9?a?3a?9?0,则(*)可化为
a88a?3x?9?3x?1,即a?1?x,而当x?2时,1?x?1,
33所以a?1,从而a?1适合题意
9② 当0?a?1时,log3?2.
a988xx⑴ 当x?log3时,(*)可化为a?3?9?3?1,即a?1?x,而1?x?1,
a33所以a?1,此时要求0?a?1
99x⑵ 当x?log3时,(*)可化为0?3?1??1,
aa所以a?R,此时只要求0?a?1
910101xx1,即a?x?1,而x?1?, (3)当2?x?log3时,(*)可化为9?a?3?3?a339111所以a?,此时要求?a?1,由⑴⑵⑶,得?a?1符合题意要求.
9991 综合①②知,满足题意的a存在,且a的取值范围是?a?1
9答案见上
46. 对于函数f(x)(x∈D),若x∈D时,恒有f?(x)>f(x)成立,则称函数f(x)是D上
的J函数.
(Ⅰ)当函数f(x)=melnx是J函数时,求m的取值范围; (Ⅱ)若函数g(x)为(0,+∞)上的J函数, ①试比较g(a)与ea?1xg(1)的大小;
②求证:对于任意大于1的实数x1,x2,x3,?,xn,均有 g(ln(x1+x2+?+xn))>g(lnx1)+g(lnx2)+?+g(lnxn).
10