8奥数全套--7-1统计与概率 题库学生版

2019-04-09 23:22

奥数视频和讲义(竞赛班+年级版+名师版)全部400G,需要的加微信:tsat1691

8-7概率与统计

1. 能准确判断事件发生的等可能性以及游戏规则的公平性问题. 2. 运用排列组合知识和枚举等计数方法求解概率问题. 3. 理解和运用概率性质进行概率的运算

教学目标

知识点拨

知识点说明

在抛掷一枚硬币时,究竟会出现什么样的结果事先是不能确定的,但是当我们在相同的条件下,大量重复地抛掷同一枚均匀硬币时,就会发现“出现正面”或“出现反面”的次数大约各占总抛掷次数的一半左右.这里的“大量重复”是指多少次呢?

历史上不少统计学家,例如皮尔逊等人作过成千上万次抛掷硬币的试验,随着试验次数的增加,出现正面的频率波动越来越小,频率在0.5这个定值附近摆动的性质是出现正面这一现象的内在必然性规律的表现,0.5恰恰就是刻画出现正面可能性大小的数值,0.5就是抛掷硬币时出现正面的概率.这就是概率统计定义的思想,这一思想也给出了在实际问题中估算概率的近似值的方法,当试验次数足够大时,可将频率作为概率的近似值.

在统计里,我们把所要考察对象的全体叫做总体,其中的每一个考察对象叫做个体。 从总体中所抽取的一部分个体叫做总体的一个样本。样本中个体的数目叫做样本的容量。 总体中所有个体的平均数叫做总体平均数,把样本中所有个体的平均数叫做样本平均数。 概率的古典定义:

如果一个试验满足两条: ⑴试验只有有限个基本结果:

⑵试验的每个基本结果出现的可能性是一样的. 这样的试验,称为古典试验.

对于古典试验中的事件A,它的概率定义为:

mP?A??,n表示该试验中所有可能出现的基本结果的总数目,m表示事件A包含的试验基本结果

n数.小学奥数中,所涉及的问题都属于古典概率.其中的m和n需要我们用枚举、加乘原理、排列组合等方法求出.

相互独立事件:P?A?B??P?A??P?B? 事件A是否发生对事件B发生的概率没有影响,这样的两个事件叫做相互独立事件. 公式含义:如果事件A和B为独立事件,那么A和B都发生的概率等于事件A发生的概率与事件B发生的概率之积.

举例:

⑴明天是否晴天与明天晚餐是否有煎鸡蛋相互没有影响,因此两个事件为相互独立事件.所以明天天晴,并且晚餐有煎鸡蛋的概率等于明天天晴的概率乘以明天晚餐有煎鸡蛋的概率.

⑵第一次抛硬币掉下来是正面向上与第二次抛硬币是正面向上是两个相互独立事件.所以第一次、第二次抛硬币掉下来后都是正面向上的概率等于两次分别抛硬币掉下来后是正面向上的概率之积,即

111P???.

224⑶掷骰子,骰子是否掉在桌上和骰子的某个数字向上是两个相互独立的事件,如果骰子掉在桌上的

1概率为0.6,那么骰子掉在桌上且数字“n”向上的概率为0.6??0.1.

6 1

奥数视频和讲义(竞赛班+年级版+名师版)全部400G,需要的加微信:tsat1691

例题精讲

【例 1】 (2007年“希望杯”二试六年级)气象台预报“本市明天降雨概率是80%”.对此信息,下列

说法中正确的是 .

①本市明天将有80%的地区降水. ②本市明天将有80%的时间降水. ③明天肯定下雨. ④明天降水的可能性比较大.

【巩固】 一个小方木块的六个面上分别写有数字2、3、5、6、7、9,小光、小亮两人随意往桌面上

扔放这个木块.规定:当小光扔时,如果朝上的一面写的是偶数,得1分.当小亮扔时,如果朝上的一面写的是奇数,得1分.每人扔100次,______得分高的可能性比较大.

【例 2】 在多家商店中调查某商品的价格,所得的数据如下(单位:元)

25 21 23 25 27 29 25 28 30 29 26 24 25 27 26 22 24 25 26 28 请填写下表

【例 3】 在某个池塘中随机捕捞100条鱼,并给鱼作上标记后放回池塘中,过一段时间后又再次随机捕

捞200尾,发现其中有25条鱼是被作过标记的,如果两次捕捞之间鱼的数量没有增加或减少,那么请你估计这个池塘中一共有鱼多少尾?

【例 4】 有黑桃、红桃、方块、草花这4种花色的扑克牌各2张,从这8张牌中任意取出2张。请

问:这2张扑克牌花色相同的概率是多少?

【巩固】 小悦从1、2、3、4、5这5个自然数中任选一个数,冬冬从2、3、4、5、6、7这6个自然数中

任选一个数。选出的两个数中,恰好有一个数是另一个数的倍数的概率是多少

【例 5】 妈妈去家乐福购物,正好碰上了橘子、香蕉、葡萄和榴莲大降价。于是她决定从这4中水

果中任选一种买回家。爸爸下班时路过集贸市场,发现有苹果、橘子、香蕉、葡萄和梨出售。他也决定任选一种买回家。请问:他们买了不同的水果的概率是多少?

1

奥数视频和讲义(竞赛班+年级版+名师版)全部400G,需要的加微信:tsat1691

【巩固】 在标准英文字典中,由2个不同字母组成的单词一共有55个.如果从26个字母中任取2个不同

的排列起来,那么恰好能拍成一个单词的概率是多少?

【巩固】 口袋里装有100张卡片,分别写着1,2,3,……,100.从中任意抽出一张。请问:

(1)抽出的卡片上的数正好是37的概率是多少? (2)抽出的卡片上的数是偶数的概率是多少? (3)抽出的卡片上的数是质数的概率是多少? (4)抽出的卡片上的数是101的概率是多少? (5)抽出的卡片上的数小于200的概率是多少?

【例 6】 在一只口袋里装着2个红球,3个荒丘和4个黑球。从口袋中任取一个球,请问:

(1)这个球是红球的概率有多少?

(2)这个球是黄球或者是黑球的概率有多少?

(3)这个是绿球的概率有多少?不是绿球的概率又有多少?

【巩固】 一只口袋里装有5个黑球和3个白球,另一只口袋里装有4个黑球和4个白球。从两只口袋里

各取出一个球。请问:取出的两个球颜色相同的概率是多少?

【巩固】 一只普通的骰子有6个面,分别写有1、2、3、4、5、6。掷出这个骰子,它的任何一面朝上的

概率都是1/6.假设你将某一个骰子连续投掷了9次,每次的结果都是1点朝上。那么第十次投掷后,朝上的面上的点数恰好是奇数的概率是多少?

【例 7】 甲、乙两个学生各从09这10个数字中随机挑选了两个数字(可能相同),求:⑴这两个数字

的差不超过2的概率,⑵两个数字的差不超过6的概率.

【巩固】 小悦掷出了2枚骰子,掷出的2个数字之和恰好等于10的概率有多少?

【巩固】 分别先后掷2次骰子,点数之和为6的概率为多少?点数之积为6的概率为多少? 1

奥数视频和讲义(竞赛班+年级版+名师版)全部400G,需要的加微信:tsat1691

【例 8】 一枚硬币连续抛掷3次,至少有一次正面向上的概率是 .

【巩固】 冬冬与阿奇做游戏:由冬冬抛出3枚硬币,如果抛出的结果中,有2枚或2枚以上的硬币正面朝

上,冬冬就获胜;否则阿奇获胜。请问:这个游戏公平吗?

【巩固】一枚硬币连续抛4次,求恰有2次正面的概率.

【巩固】 一枚硬币连续抛掷3次,求至少有两次正面向上的概率.

【巩固】 阿奇一次指出8枚硬币,结果恰有4枚硬币正面朝上的概率是多少?有超过4枚的硬币正面朝

上的概率是多少?

【例 9】 如图所示,将球放在顶部,让它们从顶部沿轨道落下,球落到底部的从左至右的概率依次是

_______.

【巩固】 如图为A、B两地之间的道路图,其中⊙表示加油站,小王驾车每行驶到出现两条通往目的地

方向道路的路口时(所有路口都是三叉的,即每到一个路口都只有一条或两条路通往目的地),都用抛硬币的方式随机选择路线,求:⑴小王驾车从A到B,经过加油站的概率.⑵小王驾车从B到A,经过加油站的概率.

AB

【例 10】 小明爬楼梯时以抛硬币来确定下一步跨1个台阶还是2个台阶,如果是正,那么跨1个台阶,如

果是反,那么跨出2个台阶,那么小明走完四步时恰好跨出6个台阶的概率为多少?

【巩固】 小明爬楼梯掷骰子来确定自己下一步所跨台阶步数,如果点数小于3,那么跨1个台阶,如果不小

于3,那么跨出2个台阶,那么小明走完四步时恰好跨出6个台阶的概率为多少?

1

奥数视频和讲义(竞赛班+年级版+名师版)全部400G,需要的加微信:tsat1691

【巩固】 从小红家门口的车站到学校,有1路、9路两种公共汽车可乘,它们都是每隔10分中开来一辆.小

红到车站后,只要看见1路或9路,马上就上车,据有人观察发现:总有1路车过去以后3分钟就来9路车,而9路车过去以后7分钟才来1路车.小红乘坐______路车的可能性较大.

【例 11】 四位同学将各自的一张明信片随意放在一起互相交换,恰有一个同学拿到自己写的明信片的概

率是________.

【巩固】两封信随机投入4个邮筒,则前两个邮筒都没有投入信的概率是________.

【巩固】 一张圆桌旁有四个座位,A、B、C、D四人随机坐到四个座位上,求A与B不相邻而坐的概率.

【例 12】 小悦与阿奇比赛下军棋,两人水平相当,两人约定塞7局,先赢4局者胜,现在已经比了三局,

小悦胜了2局,阿奇胜了1局。请问:小悦获得最后胜利的概率有多少?

【巩固】 (2008年“奥数网杯”六年级)一块电子手表,显示时与分,使用12小时计时制,例如中午12点

和半夜12点都显示为12:00.如果在一天(24小时)中的随机一个时刻看手表,至少看到一个数字“1”的概率是 .

【例 13】 某列车有4节车厢,现有6个人准备乘坐,设每一位乘客进入每节车厢的可能性是相等的,则

这6位乘客进入各节车厢的人数恰好为0,1,2,3的概率为多少?

【巩固】 三个人乘同一辆火车,火车有十节车厢,则至少有两人上同一节车厢的概率为_______.

【巩固】 某人有5把钥匙,一把房门钥匙,但是忘记是哪把,于是逐把试,问恰好第三把打开门的概率?

【巩固】 一辆肇事车辆撞人后逃离现场,警察到现场调查取证,目击者只能记得车牌是由2、3、5、7、

9五个数字组成,却把它们的排列顺序忘记了,警察在调查过程中,如果在电脑上输入一个由这五个数字构成的车牌号,那么输入的车牌号正好是肇事车辆车牌号的可能性是______.

1


8奥数全套--7-1统计与概率 题库学生版.doc 将本文的Word文档下载到电脑 下载失败或者文档不完整,请联系客服人员解决!

下一篇:初级会计实务(2017) 第02章 负债(课后作业)

相关阅读
本类排行
× 注册会员免费下载(下载后可以自由复制和排版)

马上注册会员

注:下载文档有可能“只有目录或者内容不全”等情况,请下载之前注意辨别,如果您已付费且无法下载或内容有问题,请联系我们协助你处理。
微信: QQ: