7.如图2,小华的家在A处,书店在B处,星期日小明到书店去买书, 他想尽快的赶到书店,请你帮助他选择一条最近的路线( ) A.A→C→D→B B.A→C→F→B C.A→C→E→F→B D.A→C→M→B
图2
8.已知点A、B、C都是直线l上的点,且AB=5cm,BC=3cm,那么点A与点C之间的距离是( ) A.8cm B.2cm C.8cm或2cm D.4cm
9.如图3,在直线PQ上要找一点C,且使PC=3CQ,则点C应在( ) A.PQ之间找 B.在点P左边找
C.在点Q右边找 D.在PQ之间或在点Q的右边找
图4
10.如图4,从A地到C地,可供选择的方案是走水路、走陆路、走空中.从A地到B地有2条水路、2条陆路,从B地到C地有3条陆路可供选择,走空中从A地不经B地直接到C地.则从A地到C地可供选择的方案有( )
A.20种 B.8种 C. 5种 D.13种 二、填空题(共8个小题,每小题3分,共24)
11.一个钉子把一根细木条钉在木板上,木条能转动,这表示________. 用两个钉子把细木条钉在木板上,就能固定细木条,这说明________. 12.线段MN延长到点P,使NP=
MN,A为MN的中点,B为NP的中点,若MN=6cm,则AB=__cm. 213.已知线段AB=5cm,在直线上截取BC=2cm,则AC=__cm.
14.如图5所示,线段AB的长为8cm,点C为线段AB上任意一点,若M为线段AC的中点,N为线段CB的中点,则线段MN的长是_______________.
15.已知线段AB及一点P,若AP+PB>AB,则点P在 .
16.已知线段AB=10,直线AB上有一点C,且BC=4,M是线段AC的中点,则AM的长为 . 17.已知线段AB的长为18cm,点C在线段AB的延长线上,且AC=
5BC,则线段BC=___. 318.一跳蚤在一直线上从O点开始,第1次向右跳1个单位,紧接着第2次向左跳2个单位,第3次向右跳3个单位,第4次向左跳4个单位,……,依此规律跳下去,当它跳第100次落下时,落点处离O点的距离是 个单位.
三、解答题(共66分)
19. (本题6分) 在锯木料时,一般先在木板上画出两点,然后过这两点弹出一条墨线,你能说明其道理吗?能说明道理吗? 20.(本题6分)已知平面上四点A、B、C、D,如图: (1)画直线AB; (2)画射线AD;
(3)直线AB、CD相交于E; (4)连结AC、BC相交于点F.
21.(本题8分)如图7的“金鱼”中,含有哪些可以用图中字母表示的线段、射线和直线?
22. (本题8分)如图8,AB=24cm,C、D点在线段AB上,且CD=10cm,M、N分别是AC、BD的中点,求线段MN的长.
图8
23.(本题8分)如图9,一个正五棱柱的盒子,有一只蚂蚁在A处发现一只虫子在D处,立刻赶去捕捉,你知道它怎样去吗?请在图中画出它的爬行路线.如果虫子正沿着DI方向爬行,蚂蚁欲想在点I处将它捕捉,应沿着什么方向?请在图中画出它的爬行路线.
24.(本题8分)已知线段AB=6cm,回答下列问题:
图9
当点C到A、B的距离之和等于6cm时,点C的位置应在哪里? 是否存在点C,使它到AB两点的距离之和等于5cm?
25.(本题10分)在同一条公路旁,住着五个人,他们在同一家公司上班,如图10,不妨设这五个人的家分别住在点ABDEF位置,公司在C点,若AB=4km,BC=2km,CD=3km,DE=3km,EF=1km,他们全部乘出租车上班,车费单位报销.出租车收费标准是:起步价3元(3km以内,包括3km),以后每千米1.5元(不足1km,以1km计算),每辆车能容纳3人.
(1)若他们分别乘出租车去上班,公司在支付车费多少元? (2)如果你是公司经理,你对他们有没有什么建议?
26.(本题12分)如图11所示,沿江街AB段上有四处居民小区A.C.D.B,且有AC=CD=DB,为改善居民的购物环境,想在AB上建一家超市,每个小区的居民各执一词,难以定下具体的建设位置,高经理是超市负责人,从便民、获利的角度考虑,你觉得他会把超市建在哪儿?
图11
【角】
一、基础知识 1.角的度量
(1)有公共端点的两条射线组成的图形叫做角.
(2)如图1所示,我们可将这个角表示为_______或_____或______,另外我们还可以用_______来表示角.
(1) (2) (3) (3)1周角=_______;平角=_______;1°=______′;1′=______″. (4)我们可以用角度器和经纬仪等来测量角的大小. 二、角的比较与运算
(5)比较两个角的大小,与线段的比较类似,我们可以用量角器量出角的度数,然后比较它们的大小,也可把它们叠在一起比较大小.
(7)从一个角的顶点出发,把这个角分成相等的两个角的射线,?叫做这个角的平分线. (8)如图2所示,∠AOB+∠BOC=______,∠AOB=______-________.
(9)如果两个角的和为90°,就说这两个角互为________. (10)如果两个角的和为180°,就说这两个角互为________. (11)等角的补角_______,等角的余角________.
(12)说方位角时总是以正北,正南为基准,然后说偏东,偏西. 二、知识题库
1.下图中表示∠ABC的图是( ).
2.下列关于角的说法正确的是( ).
A.两条射线组成的图形叫做角; B.延长一个角的两边;
C.角的两边是射线,所以角不可以度量; D.角的大小与这个角的两边长短无关3.下列语句正确的是( ).
A.由两条射线组成的图形叫做角 B.如图,∠A就是∠BAC
C.在∠BAC的边AB延长线上取一点D; D.对一个角的表示没有要求,可任意书定 7.下列各角中,是钝角的是( ). A.
14周角 B.2213周角 C.3平角 D.4平角 8.下列关于平角、周角的说法正确的是( ).
A.平角是一条直线 B.周角是一条射线
C.反向延长射线OA,就形成一个平角 D.两个锐角的和不一定小于平角 9.一天24小时中,时钟的分针和时针共组合成_____次平角,______次周角 10.已知∠α=18°18′,∠β=18.18°,∠γ=18.3°,下列结论正确的是( ). A.∠α=∠β B.∠α<∠β C.∠α=∠γ D.∠β>∠γ 13.计算下列各题:
(1)153°19′42″+26°40′28″ (2)90°3″-57°21′44″
(3)33°15′16″×5
10.如图所示,已知∠AOB=90°,∠AOC是锐角,ON平分∠AOC,OM平分∠BOC, 求∠MON的度数.
13.一个角与它的余角以及它的一个补角的和是直角的
三、直通中考
[北京中考]在图中一共有几个角?它们应如何表示?
7倍,求这个角的补角. 3
[广州中考](1)3.76°=______度_____分_______秒. (2)3.76°=______分=______秒.
(3)钟表在8:30时,分针与时针的夹角为______度.
第四章 图形的初步认识测试题
满分120分,时间90分钟
一、选择题(每小题3分,共30分) 1.下列空间图形中是圆柱的为( )
2.桌上放着一个茶壶,4个同学从各自的方向观察,请指出下图右边的四幅图,从左至右分别是由哪个同学看到的( )
A.①②③④ B.①③②④ C.②④①③ D.④③①②
3.小丽制作了一个如下左图所示的正方体礼品盒,其对面图案都相同,那么这个正方体的平面展开图可能是( ) D
4.下列四个生活、生产现象:①用两个钉子就可以把木条固定在墙上;②植树时,只要定出两棵树的位置,
B75?北A