2018年最新人教版六年级数学下册完整教案(2)

2019-04-14 17:10

(2)看了这些信息,你有什么感受?月球表面白天的平均温度和夜间的平均温度相差多少度?

(1)仔细读题,你获得了什么信息?有什么不明白的?(介绍:海平面就是海的平均高度;海拔是地面某个地点高出海平面的垂直距离。) (2)独立完成,集体反馈。

(3)你知道你所在城市的海拔高度吗?说说它的具体含义。 3.课件出示教材第6页练习一第2题。 (1)仔细读题,说说你知道了什么信息?

(2)请表示出悉尼、伦敦的时间。北京时间用什么表示?

(3)以北京时间为标准,孟加拉国首都达卡的时间记为-2时,你知道它此时的时间吗? (4)你还知道此时其他时区的时间吗?试着表示出来。

(四)了解历史,课堂总结

《直线上的负数》教学设计

一、教学目标 (一)知识与技能

经历在直线上表示行走距离和方向的过程,体会直线上正负数的排列规律,逐步建构数的比较完整的认知结构。

(二)过程与方法

在活动中探究直线上表示正负数的方法,学会用正负数表示相反意义的量解决实际问题,渗透数形结合的思想。

(三)情感态度和价值观

引导学生用数学的眼光关注生活中的问题,感受数学学习的价值。 二、教学重难点

教学重点:学会在直线上表示正负数,体会直线上正负数的排列规律。 教学难点:用正负数表示相反意义的量解决实际问题。 三、教学过程

(一)复习旧知,引入新课 填一填。

①一辆公共汽车经过某站台时有12人上车,记作( )人;7人下车,记作( )人。

5

②阳光小学今年招收新生300人,记作+300人,那么-420人表示( )。

③升降机上升3.5米,记作+3.5米;-4米表示( )。 (1)独立完成,集体反馈。

(2)像这样表示两种相反意义的量可以用正负数表示,你还能举出这样的例子吗? 【设计意图】回顾复习正负数的意义,为新知学习做好铺垫。 (二)创新情境,探究新知 1.认识直线上的负数

(1)课件出示教材第5页例3。

说说你知道了什么信息?

(2)如何在直线上表示他们的行走的距离和方向呢?你准备怎么画?

预设:①以大树为起点,向东为正,向西为负;②0表示起点,向东走2米,表示为+2米,向西走2米,表示为-2米。

(3)独立画图,交流反馈。 ①你是怎么画的?

②比较大家的画法有什么不同?(单位长度不一样。) ③直线上其他几个点代表什么数?

【设计意图】让学生在实践活动中自主探索在直线上表示行走距离和方向的方法,初步认识直线上的负数,培养独立思考习惯与实践操作力。 2.感知直线上数的变化 (1)在直线上表示负数

①请学生独立在直线上表示出1.5和-1.5。 ②集体交流:说说你是如何表示的?

预设:①-1.5 m表示向西走1.5 m;②-1.5在-1和-2之间。 (2)如果你想从起点分别到1.5和-1.5处,应该如何运动? (3)观察1.5和-1.5的位置,你发现了什么?

预设:①1.5在0的右面1.5个单位长度,-1.5在0的左面1.5个单位长度,它们表示的意义相反;②它们到0的距离相等,都是1.5个单位长度;③它们之间相距3个单位长度。

6

【设计意图】通过1.5和-1.5的对比,明确在直线上表示正负数的方法,并引导学生发现两个数离起点的距离相等,只不过分别在0的左右两侧,透+1.5和—1.5的绝对值是相等的。 (4)同桌合作游戏:你走我说。

举例:如果小明从“—2”的位置要走到“—4”,应该如何运动?

(5)引导观察:在直线上从0往右依次是什么数?从0往左呢?你发现了什么规律? 预设:①0右边的数是正数;②0左边的数是负数;③从左往右的数逐渐增大;④正数比0大,负数比0小。

【设计意图】在游戏中进一步加深对直线的认识,体会直线上正负数的排列规律,渗透负数的加减法的认识,为以后学习做铺垫。 (三)巩固深化,拓展应用 1.基本练习

①独立完成,集体交流。 说说怎样在直线上表示这些数? ②从起点到-如何运动?哪个点与它到0的距离相等?它们之间相距几个单位长度?

、-0.5这样的负分数、负小数,引导学生认识到任何一个

【设计意图】通过在直线上表示-①独立完成,集体反馈。

②如果一个人从“-2”位置出发向西走1米,将会到达什么位置?如果从“-2”出发先向西走1米,再向东走4米,将会到达什么位置? ③同桌合作游戏:你说我走。

游戏规则:一个人说明起点的位置和如何运动,另一个人用笔尖表示人在数轴上运动,标出最后到达的位置,并用一个数表示这个位置。 ①说说你知道了什么信息? ② 独立完成,集体反馈。

①你知道这六名同学的实际成绩分别是多少吗? ②独立计算,集体反馈。

预设:方法一:(84+90+75+80+87+76)÷6=82(分);方法二:80+(4+10+7-5-4)÷6=82(分)。

【设计意图】结合现实情境让学生学会用正负数表示相反意义的量解决实际问题,体会负数的现实意义,引导学生用数学的眼光关注生活中的问题,感受数学学习的价值。 (四)课堂总结

说说这节课你有什么收获?

7

数都可以用直线上的一个点来表示,让学生对用数轴上的点表示正负数形成相对完整的认识。

《百分数》 《折扣与成数》教学设计

一、教学目标 (一)知识与技能

1.理解“折扣”“成数”的含义,知道它们在生活中的简单应用。

2.在理解“折扣”“成数”含义的基础上,能自主解决与此相关的实际问题,培养学生运用知识解决实际问题的能力。 (二)过程与方法

利用生活情境重现结合所学数学知识,发挥学生学习的主动性;同时通过引导对比及学生的自主探索,发现知识之间的联系。 (三)情感态度和价值观

通过教学,使学生感受到数学与实际生活的联系,培养学生数学的应用意识。在自主探索的过程中,感受数学学习的乐趣。 四、教学过程

(一)创设情境,引入新课

1.同学们去商场购物的时候遇到过商家做促销活动吗?一般他们会采用哪些促销手段? 2.刚才同学们都提到了“打折”这种情况,没错,像这样降价出售一些商品,引发人们的购买欲望,是商家常用的促销手段之一。今天这节课,我们就先来了解有关于“折扣”这件事(板书课题──折扣)。

【设计意图】从学生的生活经验入手,引导学生进行知识的迁移,为学生自主探索理解打下基础,也让学生体会到数学与生活的联系。

(二)结合情境,学习新知 1.理解“折扣”

这里的九折、八五折是什么意思? (2)同桌互相说一说。 (3)反馈:

预设:①举例说明:一件衣服100元,八五折的话就只要85元。 ②九折就是现价是原价的90%。

(4)归纳:商品打几折,其实就是指现价是原价的百分之几。 (5)练习:看折扣写出相应的百分数。

8

( )% ( )%

( )%

2.解决与“折扣”相关的问题

(1)课件出示教材第8页例1第(1)小题:爸爸给小雨买了一辆自行车,原价180元,现在商店打八五折出售。买这辆车用了多少钱?

①独立完成并进行校对。

②反馈:谁能来说说自己是怎么想的,为什么这样计算? 重点分析以下问题:

问题一:八五折是什么意思?是把谁看作单位“1”?

问题二:求“买这辆车用了多少钱”也就是在求什么?(180的85%是多少)

(2)课件出示教材第8页例1第(2)小题:爸爸买了一个随身听,原价160元,现在只花了九折的钱,比原价便宜了多少钱?

①独立思考并完成,同桌交流解题思路。 ②交流反馈:

重点对比两种解题方式:

第一种算法:原价160减去现价(即原价的90%):160-160×90%。

第二种算法:现价是原价的90%,也就是现价比原价便宜了(1-90%),160×(1-90%)就是便宜的价钱。

想想哪种方法计算起来比较简便。

(3)练习教材第8页“做一做”,完成后校对。

(4)小结:通过刚才的问题解决,你发现原价、现价、折扣之间有什么关系吗? 现价=原价×折扣。

【设计意图】引导学生运用折扣的意义解决生活中的问题。让学生充分掌握学习的自主权,认真去分析、思考,并在理解的基础上展示不同的解题方法,实现问题解决的多样化,并进行方法优化的引领。

9


2018年最新人教版六年级数学下册完整教案(2).doc 将本文的Word文档下载到电脑 下载失败或者文档不完整,请联系客服人员解决!

下一篇:十八岁和其他

相关阅读
本类排行
× 注册会员免费下载(下载后可以自由复制和排版)

马上注册会员

注:下载文档有可能“只有目录或者内容不全”等情况,请下载之前注意辨别,如果您已付费且无法下载或内容有问题,请联系我们协助你处理。
微信: QQ: