(1)引导学生认真对照图形和模型观察。
请一名学生上台指出哪是圆锥的底面,哪是圆锥的侧面。
师:我们已经知道了圆锥的底面和侧面,大家围绕下面几个问题同桌之间共同探讨。
①圆锥有几个底面?是什么形状的?
②用手摸一摸圆锥的侧面,你发现了什么?
③用手摸一摸圆锥的顶点,你有什么感觉?组织学生先独立思考,再在小组中相互交流,然后汇报。教师根据学生的汇报结果小结:圆锥有一个底面,是圆形的,有一个侧面,它是一个曲面,有一个顶点。
(2)怎样画圆锥的平面图呢?
示范:先画一个等腰三角形,它的底边是虚线,然后画出它的底面,底面要画成椭圆的,最后标出顶点、底面、圆心、底面半径r。(师在黑板上画出来)
学生试着在自己的练习本上画。 (3)认识圆锥的高。
师:圆锥的高在哪里?圆锥的高有几条?先让学生小组讨论交流汇报,然后全班讨论。 教师:圆锥的高就是指从圆锥的顶点到底面圆心的距离。(师在黑板上画出来) 那么它有几条高一看就知道了。(1条)
(4)测量圆锥的高。
教师:由于圆锥的高在圆锥的里面,我们不能直接测量它的长度,怎样测量圆锥的高呢? 组织学生小组合作,交流汇报。 ①把圆锥的底面放平;
②用一块木板水平的放在圆锥的顶点上面; ③竖直地量出平板和底面之间的距离。 同桌相互配合,动手测量手中圆锥的高。 教师:谁来展示一下你的方法,有其它的方法吗?
教师:如果是圆锥形的沙堆和粮堆,又怎样测量它的高呢?(学生合作实验,并相互交流) (5)大家喜欢制作玩具吗?下面我们一起制作一个玩具,好吗?拿出你准备的三角形、长方形硬纸片,快速转动,看一看它们是什么形状?(学生操作演示,小组内互相演示)
【课堂作业】
1.完成教材第32页的“做一做”。 2.完成教材第35页练习六第1、2题。 答案:
30
1.做一做:提示:亲自动手测量出圆锥的底面直径和高。
2.第1题:蒙古包由圆柱和圆锥组成;墨水瓶由2个长方体和1个圆柱组成;建筑物由圆柱、圆锥、长方体组成。
【课堂小结】
通过这节课的学习,你有哪些收获?让学生畅所欲言后,教师再加以小结。 【课后作业】
完成练习册中本课时的练习。
圆锥的底面是个圆,侧面是一个曲面。 从圆锥的顶点到底面圆心的距离是圆锥的高。
《圆锥的体积》教学设计
【教学目标】
1、知识与技能:掌握圆锥的体积计算公式,能运用公式求圆锥的体积,并且能运用这一知识解决生活中一些简单的实际问题。
2、过程与方法:通过“直觉猜想——试验探索——合作交流——得出结论——实践运用”探索过程,获得圆锥体积的推导过程和学习的方法。
【教学重点】圆锥体积公式的理解,并能运用公式求圆锥的体积。 【教学难点】圆锥体积公式的推导
第 一 课 时 一、回顾旧知识
1、你能计算哪些规则物体的体积? 2、你能说出圆锥各部分的名称吗?
【设计意图】通过对旧知识的回顾,进一步为学习新知识作好铺垫。
二、创设情景 激发激情
展示砖工师傅使用的铅锤体(圆锥),你能测试出它的体积吗?
31
【设计意图】以生活中的数学的形式进行设置情景,引疑激趣迁移,激发学生好奇心和求知欲。(揭示课题:圆锥的体积)
三、试验探究 合作学习(探讨圆柱与圆锥体积之间的关系) 探究一:(分组试验)圆柱与圆锥的底和高各有什么关系? 1、猜想:猜想它们的底、高之间各有什么关系?
2、试验验证猜想:每组拿出圆柱、圆锥各1个,分组试验,试验后记录结果; 3、小组汇报试验结论,集体评议:(注意汇报出试验步骤和结论) 4、教师介绍数学专用名词:等底 等高
【设计意图】通过探究一活动,初步突破了本课的难点,为探究二活动活动开展作好了铺垫。 探究二:(分组试验)研讨等底等高圆柱与圆锥的体积之间有什么关系? 1、大胆猜想:等底等高圆柱与圆锥体积之间的关系
2、试验验证猜想:每组拿出水槽(装有适量的水),通过试验,你发现了圆柱的体积和圆锥的体积有什么关系?边试验边记录试验数据(教师巡视指导每组的试验) 3、小组汇报试验结论(提醒学生汇报出试验步骤) 四、实践运用 提升技能
1、判断题:【题目内容见多媒体展示】独立思考---抽生汇报---说明理由---师生评议 2、口答题:【题目内容见多媒体展示】独立思考---抽生汇报---学生评议
3、拓展运用:【课本例题3】学生分析题意---小组合作解答---学生解答展示---师生评议 【设计意图】通过判断题、口答题题型的训练,及时检查学生对所学知识的理解程度,巩固了圆锥体的体积公式。而拓展题型具有开放性给学生提供思维发展的空间,让他们有跳起来摘果子的机会,以达到培养能力、发展个性的目的。 五、谈谈收获:这节课你学到了什么呢? 六、课堂作业:
1、做在书上作业:练习四 第4、7题 2、坐在作业本上作业:练习四 第3题 【课后反思】
圆锥的体积(2)
32
【教学内容】
圆锥的体积(教材第34页例3)。 【教学目标】
进一步理解圆锥的体积公式,能运用公式进行计算,能解决简单的实际问题。 【重点难点】圆锥体积公式的实际应用。 教学过程 【情景导入】
前面的课程中我们一起经历了圆锥体积公式的推导过程。有同学能说一说么?
11指名学生回答。板书:V圆锥=V圆柱=Sh
33【新课讲授】
1.教学例3。
(1)组织学生阅读题目,理解题意。 (2)组织学生独立思考,尝试解答。
(3)组织学生交流反馈,结合学生发言,教师板书: 沙堆底面积:
3.14×(4÷2)2=3.14×4=12.56(m2)
沙堆的体积:1/3×12.56×1.2=0.4×12.56=5.024≈5.02(m3) 答:这堆沙子的体积大约是5.02m3。 2.教学补充例题。
例:在打谷场上,有一个近似于圆锥的小麦堆,测得底面直径是4m,高是1.5m,每立方米小麦约重735kg,这堆小麦大约有多少千克?
教师先引导学生读题,弄清题意。组织学生在小组中合作完成,并在全班交流。
4答案:13×3.14×()2×1.5×735=4615.8(kg)
2【课堂作业】
完成教材第34页“做一做”第2题。
33
“比例的意义和性质”教学设计
教学内容:人教版六年级(下)P32~34“比例的意义和性质”。 教学目标:
1、在具体的情境中经历比例的形成过程,理解比例的意义,掌握组成比例的关键条件,并能正确的判断两个比能否组成比例。
2、通过自主探索发现比例的基本性质,能运用比例的性质进行判断。
3、通过动手、动脑、观察、计算、讨论等方式,使学生自主获取知识,全面参与教学活动。
4、通过探索国旗中蕴含的数学知识,渗透爱国主义教育。 教学重点:理解比例的意义和性质。
教学难点:应用比例的意义和性质判断两个比能否组成比例。 教学过程:
一、渗透情感,导入新课
师:四幅不同的场景,都有共同的标志——五星红旗,五星红旗是中华人民共和国的象征;这些国旗有大有小,你知道这些国旗的长和宽是多少吗?
2、媒体出示国旗的长和宽,并提出问题。 天安门升国旗仪式:长5米,宽10/3米。 校园升旗仪式:长2.4米,宽1.6米。 教室场景:长60厘米,宽40厘米。 签约仪式:长15厘米,宽10厘米。
师:这些国旗的大小不一,是不是国旗想做多大就做多大呢?是不是这中间隐含着什么共同点呢?
师生交流,得出每面国旗的大小不一,但是它们的长和宽隐含着共同的特点,是什么呢?3、学生探索,发现问题。
师:每面国旗的大小不一样,但是它的长和宽中却隐含着共同的特点,是什么呢? 学生自主观察、计算,发现国旗的长和宽的比值相等。 二、认识比例,发现特征 1、引出比例,理解比例的意义。
并板书:2.4∶1.6 =3/2 60∶40=3/2
师指出这两面国旗的长和宽的比值相等,中间可以用等号连接,并指出像这样的式子叫比例。
并板书:2.4∶1.6 =60∶40 2、认识比例,知道比例各项的名称。
⑴学生照样子利用主题图仿写一个比例,并说出自己是怎样写出来的。 ⑵学生尝试说说什么叫比例。
34