= 2umax/R
15/7
∫0(R – r)rdr
R1/7
= 0.82umax
u/ umax=0.82
18. 一定量的液体在圆形直管内做滞流流动。若管长及液体物性不变,而管径减至原有的1/2,问因流动阻力而产生的能量损失为原来的若干倍? 解:∵管径减少后流量不变
∴u1A1=u2A2而r1=r2 ∴A1=4A2 ∴u2=4u
由能量损失计算公式∑hf=λ?(ι/d)×(1/2u)得
∑hf,1=λ?(ι/d)×(1/2u1)
∑hf,2=λ?(ι/d)×(1/2u2)=λ?(ι/d)× 8(u1)
=16∑hf,1
∴hf2 = 16 hf1
19. 内截面为1000mm×1200mm的矩形烟囱的高度为30 A1m。平均分子量为30kg/kmol,平均温度为400℃的烟道气自下而上流动。烟囱下端维持49Pa的真空度。在烟囱高度范围内大气的密度可视为定值,大气温度为20℃,地面处的大气压强为101.33×103Pa。流体经烟囱时的摩擦系数可取为0.05,试求烟道气的流量为若干kg/h? 解:烟囱的水力半径 rН= A/п= (1×1.2)/2(1+1.2)=0.273m 当量直径 de= 4rН=1.109m 流体流经烟囱损失的能量
∑hf=λ?(ι/ de)·u/2 =0.05×(30/1.109)×u/2 =0.687 u 空气的密度 ρ
空气
2
2
22
2
2
2
= PM/RT = 1.21Kg/m
空气
3
烟囱的上表面压强 (表压) P上=-ρgh = 1.21×9.81×30
=-355.02 Pa
烟囱的下表面压强 (表压) P下=-49 Pa
烟囱内的平均压强 P= (P上+ P下)/2 + P0 = 101128 Pa
由ρ= PM/RT 可以得到烟囱气体的密度
ρ= (30×10×101128)/(8.314×673) = 0.5422 Kg/m 在烟囱上下表面列伯努利方程 P上/ρ= P下/ρ+ Zg+∑hf ∴∑hf= (P上- P下)/ρ – Zg
=(-49+355.02)/0.5422 – 30×9.81 = 268.25 = 0.687 u 流体流速 u = 19.76 m/s
质量流量 ωs= uAρ= 19.76×1×1.2×0.5422 = 4.63×10 Kg/h
20. 每小时将2×103kg的溶液用泵从反应器输送到高位槽。反应器液面上方保持26.7×103Pa的真空读,高位槽液面上方为大气压强。管道为的钢管,总长为50m,管线上有两个全开的闸阀,一个孔板流量计(局部阻力系数为4),5个标准弯头。反应器内液面与管路出口的距离为15m 。若泵效率为0.7,求泵的轴功率。
解: 流体的质量流速 ωs = 2×10/3600 = 5.56 kg/s 流速 u =ωs/(Aρ)=1.43m/s
雷偌准数Re=duρ/μ= 165199 > 4000
查本书附图1-29得 5个标准弯头的当量长度: 5×2.1=10.5m 2个全开阀的当量长度: 2×0.45 = 0.9m ∴局部阻力当量长度 ∑ι 假定 1/λ
1/2
e44
2
3
-3
=10.5 + 0.9 = 11.4m
=2 lg(d /ε) +1.14 = 2 lg(68/0.3) + 1.14
∴λ= 0.029 检验 d/(ε×Re×λ
1/2
) = 0.008 > 0.005
∴符合假定即 λ=0.029
∴全流程阻力损失 ∑h=λ×(ι+ ∑ι
e
)/d × u/2 + ζ×u/2
3
2
22
= [0.029×(50+11.4)/(68×10) + 4]×1.43/2
= 30.863 J/Kg 在反应槽和高位槽液面列伯努利方程得 P1/ρ+ We = Zg + P2/ρ+ ∑h We = Zg + (P1- P2)/ρ+∑h
= 15×9.81 + 26.7×10/1073 + 30.863 = 202.9 J/Kg
有效功率 Ne = We×ωs = 202.9×5.56 = 1.128×10 轴功率 N = Ne/η=1.128×10/0.7 = 1.61×10W = 1.61KW
21. 从设备送出的废气中有少量可溶物质,在放空之前令其通过一个洗涤器,以回收这些 物质进行综合利用,并避免环境污染。气体流量为3600m3/h,其物理性质与50℃的空气基本相同。如本题附图所示,气体进入鼓风机前的管路上安装有指示液为水的U管压差计,起读数为30mm。输气管与放空管的内径均为250mm,管长与管件,阀门的当量
长度之和为50m,放空机与鼓风机进口的垂直距离为20m,已估计气体通过塔内填料层的压强降为1.96×103Pa。管壁的绝对粗糙度可取0.15mm,大气压强为101.33×103。求鼓风机的有效功率。
解:查表得该气体的有关物性常数ρ=1.093 , μ=1.96×10Pa·s
气体流速 u = 3600/(3600×4/π×0.25) = 20.38 m/s 质量流量 ωs = uAs = 20.38×4/π×0.25×1.093 =1.093 Kg/s
流体流动的雷偌准数 Re = duρ/μ= 2.84×10 为湍流型 所有当量长度之和 ι
总
5
22
-5
3
3
3
3
=ι+Σι
e
=50m
ε取0.15时 ε/d = 0.15/250= 0.0006 查表得λ=0.0189 所有能量损失包括出口,入口和管道能量损失
即: ∑h= 0.5×u/2 + 1×u/2 + (0.0189×50/0.25)· u/2
2
2
2
=1100.66
在1-1﹑2-2两截面处列伯努利方程
u/2 + P1/ρ+ We = Zg + u/2 + P2/ρ + ∑h
We = Zg + (P2- P1)/ρ+∑h
而1-1﹑2-2两截面处的压强差 P2- P1 = P2-ρ10
= 1665.7 Pa
∴We = 2820.83 W/Kg
泵的有效功率 Ne = We×ωs= 3083.2W = 3.08 KW
22. 如本题附图所示,,贮水槽水位维持不变。槽底与内径为100mm 的钢质放水管相连,管路上装有一个闸阀,距管路入口端15m 处安有以水银为指示液的U管差压计,其一臂与管
道相连,另一臂通大气。压差计连接管内充满了水,测压点与管路出口端之间的长度为20m。 (1).当闸阀关闭时,测得R=600mm,h=1500mm;当闸阀部分开启时,测的R=400mm,h=1400mm。摩擦系数可取0.025,管路入口处的局部阻力系数为0.5。问每小时从管中水流出若干立方米。
(2).当闸阀全开时,U管压差计测压处的静压强为若干(Pa,表压)。闸阀全开时le/d≈15,摩擦系数仍取0.025。
解: ⑴根据流体静力学基本方程, 设槽面到管道的高度为x ρ
水
3
水
2
2
gh = 1.96×10- 10×9.81×31×
3 3
g(h+x)= ρ
3
水银
gR
3
10×(1.5+x) = 13.6×10×0.6 x = 6.6m
部分开启时截面处的压强 P1 =ρ
水银
gR -ρ
水
gh = 39.63×10Pa
3
在槽面处和1-1截面处列伯努利方程
Zg + 0 + 0 = 0 + u/2 + P1/ρ + ∑h 而∑h= [λ(ι+Σι
= 2.125 u
2
e2
)/d +ζ]· u/2
2
∴6.6×9.81 = u/2 + 39.63 + 2.125 u u = 3.09/s
体积流量ωs= uAρ= 3.09×π/4×(0.1)×3600 = 87.41m/h ⑵ 闸阀全开时 取2-2,3-3截面列伯努利方程
Zg = u/2 + 0.5u/2 + 0.025×(15 +ι/d)u/2 u = 3.47m/s
取1-1﹑3-3截面列伯努利方程 P1/ρ = u/2 + 0.025×(15+ι ∴P1 = 3.7×10Pa
23. 10℃的水以500L/min 的流量流过一根长为300m 的水平管,管壁的绝对粗糙度为0.05。有6m 的压头可供克服流动阻力,试求管径的最小尺寸。
解:查表得10℃时的水的密度ρ= 999.7Kg/m μ = 130.77×10 Pa·s u = Vs/A = 10.85×10/d ∵ ∑hf = 6×9.81 = 58.86J/Kg
∑hf=(λ·ι/d) u/2 =λ·150 u/d 假设为滞流λ= 64/Re = 64μ/duρ ∵Hfg≥∑hf ∴d≤1.5×10 检验得Re = 7051.22 > 2000 ∴ 不符合假设 ∴为湍流
假设Re = 9.7×10 即 duρ/μ= 9.7×10 ∴d =8.34×10m
则ε/d = 0.0006 查表得λ= 0.021 要使∑hf≤Hfg 成立则 λ·150 u/d≤58.86 d≥1.82×10m
24. 某油品的密度为800kg/m3,粘度为41cP,
-22
-24
4
-3
2
2
-3
2
3
-5
'
4
'
2
'
2
2
2
2
3
22
/d)u/2
2