由下列数据绘出管道特性曲线 Ηe--Qe Qe ,L/min 0 Ηe ,m 4.8 100 6.48 200 11.53 300 400 500 46.88 19.95 31.73 绘出离心泵的特性曲线H--Q于同一坐标系中,如图所示: 两曲线的交点即为该泵在运转时的流量
∴ 泵的流量为400L/min ⑵若排出空间为密闭容器, 则K =△Z + △P/ρg
=4.8 + 129.5×10/998.2×9.81 = 1.802
∵而B 的值保持不变
∴管路的特性方程为Ηe= 18.02 + 1.683×10Qe 重新绘出管路的特性曲线和泵的特性曲线 Qe ,L/min 0 Ηe ,m 18.02 100 19.70 200 24.75 300 33.17 400 44.95 500 60.10 -4
2
3
可以得到泵的流量为310L/min
6. 某型号的离心泵,其压头与流量的关系可表示为H=18 - 0.6×10Q(H单位为m,Q单位为m3/s) 若用该泵从常压贮水池将水抽到渠道中,已知贮水池截面积为100m2,池中水深7m。输水之初池内水面低于渠道水平面2m,假设输水渠道水面保持不变,且与大气相通。管路系统的压头损失为Hf=0.4×10 Q(Hf单位为m,Q单位为m3/s)。试求将贮水池内水全部抽出所需时间。
解: 列出管路特性方程Ηe= K + Hf
K= △Z + △P/ρg
∵贮水池和渠道均保持常压 ∴△P/ρg = 0 ∴K= △Z
∴Ηe= △Z + 0.4×10Q 在输水之初△Z = 2m
∴Ηe= 2 + 0.4×10Q
62
62
2
62
联立H=18-0.6×10Q ,解出此时的流量Q = 4×10m/s 将贮水槽的水全部抽出 △Z = 9m ∴Ηe= 9 + 0.4×10Q
再次联立H=18-0.6×10Q ,解出此时的流量Q = 3×10m/s ∵ 流量Q 随着水的不断抽出而不断变小
∴ 取Q 的平均值 Q平均= (Q + Q)/2 = 3.5×10m/s 把水抽完所需时间
η= V/ Q平均 = 55.6 h
7. 用两台离心泵从水池向高位槽送水,单台泵的特性曲线方程为 H=25—1×10Q2 管路特性曲线方程可近似表示为 H=10+1×10Q2 两式中Q的单位为m3/s,H的单位为m。 试问两泵如何组合才能使输液量最大?(输水过程为定态流动)
分析:两台泵有串联和并联两种组合方法 串联时单台泵的送水量即为管路中的总量,泵的压头为单台泵的两倍;并联时泵的压头即为单台泵的压头,单台送水量为管路总送水量的一半
解:①串联 He = 2H
10 + 1×10Qe= 2×(25-1×10Q)
∴ Qe= 0.436×10m/s
②并联 Q = Qe/2
25-1×10× Qe= 10 + 1×10( Qe/2) ∴ Qe = 0.383×10m/s 总送水量 Qe= 2 Qe= 0.765×10m/s ∴并联组合输送量大
8 . 现采用一台三效单动往复泵,将敞口贮罐中密度为1250kg/m3的液体输送到表压强为 1.28×10Pa的塔内,贮罐液面比塔入口低10m,管路系统的总压头损失为2m,已知泵 活塞直径为70mm,冲程为225mm,往复次数为2001/min,泵的总效率和容积效率为0.9和0.95。试求泵的实际流量,压头和轴功率。 解:三动泵理论平均流量
QT = 3ASnr = 3×π/4 ×(0.07)×0.025×200
2
6
'
-22
-22
6
2
5
2
-22
5
2
626
6
'
-33
62
'
-33
6'2
62 -33
=0.52m/min
实际流量Q = ηQT =0.95×0.52 = 0.494 m/min
泵的压头 H = △P/ρg + △u/2g + ΣHf + Z 取△u/2g = 0 =△P/ρg + ΣHf + Z
= 1.28×10/1250×9.81 + 2 + 10 = 116.38m
轴功率 N = HQρ/102η = 13.05 Kw
9. 用一往复泵将密度为1200kg/m3的液体从A池输送到B槽中,A池和B槽液面上方均 为大气压。往复泵的流量为5m3/h。输送开始时,B槽和A池的液面高度差为10m。输送过程中,A池液面不断下降,B槽液面不断上升。输送管径为30mm,长为15m(包括局部阻力当量长度)。A池截面积为12m2,B槽截面积为4.15m2。液体在管中流动时摩擦系数为0.04。试求把25m3液体从A池输送到B槽所需的能量。 解:列出此往复泵输送的管路特性方程 Ηe= K + BQe 而 K = △P/ρg + △u/2g + Z ∵A,B槽上方均大气压 ∴△P/ρg = 0 ,△u/2g = 0 在输送开始时 ,h0= 10 m
输送完毕后 A池液面下降:25/12 = 2.01m B池液面上升: 25/4.15 = 6.1 m ∴h = 10 + 2.01 + 6.1 = 18.11m
B =λ?(ι+ Σι
e
222
6
2
2
3
3
)/d · 1/2g(3600A)
2
=0.4× 15/0.03 × 1/[(3600×π/4×0.03)×2×9.81] =0.157
输送开始时管路的特性方程 Ηe= 10 + 0.157Qe 输送完毕时管路的特性方程 Ηe= 18.4 + 0.157Qe
取平均压头Η平均=(Ηe+Ηe)/2 = (10 + 0.157Qe + 8.4 + 0.157Qe )/2 ,Qe=5 m/s = 18 m
输送所需要的时间 η= V/Q = 25/5 = 5h =18000
'
2
2
3
'
22
22
输送有效功率 Ne = HQρg = 18×5/3600 ×1200×9.81 = 294.3 所需要的能量 W = Neη= 5.3×10 J = 5300KJ
10. 已知空气的最大输送量为14500kg/h,在最大风量下输送系统所需的风压为1600Pa(以风机进口状态级计)。由于工艺条件的呀求。风机进口与温度为40℃,真空度为196Pa的设备相连。试选合适的离心通风机。当地大气压为93.3kPa。 解:输送洁净空气应选用4-72-11型通风机
40℃,真空度为196Pa时空气的密度 ρ= MP/RT = 1.04Kg/m 将输送系统的风压HT按HT = HTρ/ρ HT = 1600×1.2/1.04 = 1850.72 m
输送的体积流量 Q = Qm/ρ= 14500/1.04 = 13942.31 m/h 根据输送量和风压选择 4-72-11 No 6c型可以满足要求 其特性参数为 转速(r/min) 2000
11.15℃的空气直接由大气进入风机在通过内径为800mm的水平管道送到炉底,炉底表压为10kPa。空气输送量为20000m/h(进口状态计),管长为100m(包括局部阻力当量长度),管壁绝对粗糙度可取为0.3mm。现库存一台离心通风机,其性能如下所示。核算此风机是否合用?当地大气压为101.33kPa。
转速,r/min 风压,Pa 1450 解:输送系统的风压
HT= (Z2–Z1)ρg + P2– P1 + (u2-u1)/2 + ρΣhf ∵水平管道输送 ,∴Z2–Z1= 0 ,(u2-u1)/2 = 0
空气的流动速度u = Q/A = 20000/(π/4 ·0.8×3600) = 11.06m/s
查本书附图可得 15℃空气的粘度μ= 1.79×10Pa·s ,密度ρ= 1.226 Kg/m Re = duρ/μ= 0.8×1.226×11.06/1.79×10
-3
-3
3
2
2
2
'
2
2
3
'
'
'
'
3
6
风压(Pa) 1941.8 风量(m/h) 14100 3 效率(%) 91 功率(Kw) 10.0 风量,m3/h 21800 12650 = 6059.1
ε/d = 0.3/800 = 0.000375
根据Re-ε/d图可以得到其相对粗糙度λ=0.0365 ∴Σhf =λ?(ι+ Σι
e
)/d ? u/2
2
2
=0.0365×100/0.8 ×11.06/2 =279.1
输送系统风压HT= P2– P1 + ρΣhf = 10.8×10 + 1.226×279.1 = 11142.12Pa < 12650Pa 且 Q = 20000〈 21800 ∴此风机合用
12. 某单级双缸双动空气压缩机,活塞直径为300mm,冲程为200mm,每分钟往复480次。压缩机的吸气压强为9.807×10Pa,排气压强为34.32×10Pa。试计算该压缩机的排气量和轴功率。假设汽缸的余隙系数为8%,排气系数为容积系数的85%,绝热总效率为0.7。空气的绝热指数为1.4。
解:双缸双动压缩机吸气量Vmin =(4A-a)snr 活杆面积与活塞面积相比可以略去不计
∴吸收量Vmin =4Asnr = 4 ×π/4 ×0.3×0.2×480 = 27.13 m/min
压缩机容积系数λ0= 1-ε[(P2/P1)-1] = 1- 0.08[(34.32/9.80) =0.8843 λd=0.85λ0 = 0.7516 ∴排气量Vmin=λd?Vmin= 20.39m/min
实际压缩功率 Na= P1 Vmin·к/(к-1)[(P2/P1) = 50.19 Kw
该压缩机的轴功率 N = Na/ηa =50.19/0.7 = 71.7Kw
13. 用三级压缩把20℃的空气从98.07×103kPa压缩到62.8×10Pa。设中间冷却器能把送
5
κ/(κ-1)
'
3
1/1.4
1/r
3
'
2
4
4
3
'
-1]
–1]