证明圆的切线方法
我们学习了直线和圆的位置关系,就出现了新的一类习题,就是证明一直线是圆的切线.在我们所学的知识范围内,证明圆的切线常用的方法有:
一、若直线l过⊙O上某一点A,证明l是⊙O的切线,只需连OA,证明OA⊥l就行了,简称“连半径,证垂直”,难点在于如何证明两线垂直.
例1 如图,在△ABC中,AB=AC,以AB为直径的⊙O交BC于D,交AC于E,B为切点的切线交OD延长线于F.
求证:EF与⊙O相切. 证明:连结OE,AD. ∵AB是⊙O的直径, ∴AD⊥BC. 又∵AB=BC, ∴∠3=∠4.
⌒ ,∠1=∠2. ∴⌒BD=DE 又∵OB=OE,OF=OF, ∴△BOF≌△EOF(SAS). ∴∠OBF=∠OEF. ∵BF与⊙O相切, ∴OB⊥BF. ∴∠OEF=900. ∴EF与⊙O相切.
说明:此题是通过证明三角形全等证明垂直的
1
例2 如图,AD是∠BAC的平分线,P为BC延长线上一点,且PA=PD. 求证:PA与⊙O相切. 证明一:作直径AE,连结EC. ∵AD是∠BAC的平分线, ∴∠DAB=∠DAC. ∵PA=PD, ∴∠2=∠1+∠DAC. ∵∠2=∠B+∠DAB, ∴∠1=∠B. 又∵∠B=∠E, ∴∠1=∠E
∵AE是⊙O的直径, ∴AC⊥EC,∠E+∠EAC=900. ∴∠1+∠EAC=900. 即OA⊥PA.
∴PA与⊙O相切.
证明二:延长AD交⊙O于E,连结OA,OE. ∵AD是∠BAC的平分线,
⌒ ⌒ ∴BE=CE,
∴OE⊥BC.
0
∴∠E+∠BDE=90. ∵OA=OE, ∴∠E=∠1. ∵PA=PD, ∴∠PAD=∠PDA. 又∵∠PDA=∠BDE,
2
∴∠1+∠PAD=90
即OA⊥PA. ∴PA与⊙O相切
0
说明:此题是通过证明两角互余,证明垂直的,解题中要注意知识的综合运用. 例3 如图,AB=AC,AB是⊙O的直径,⊙O交BC于D,DM⊥AC于M 求证:DM与⊙O相切. 证明一:连结OD. ∵AB=AC, ∴∠B=∠C. ∵OB=OD,
∴∠1=∠B.
∴∠1=∠C. ∴OD∥AC. ∵DM⊥AC, D ∴DM⊥OD.
∴DM与⊙O相切
证明二:连结OD,AD. ∵AB是⊙O的直径, ∴AD⊥BC.
又∵AB=AC,
∴∠1=∠2. ∵DM⊥AC, ∴∠2+∠4=900
∵OA=OD, C ∴∠1=∠3.
∴∠3+∠4=900.
3
即OD⊥DM. ∴DM是⊙O的切线
说明:证明一是通过证平行来证明垂直的.证明二是通过证两角互余证明垂直的,解题中注意充分利用已知及图上已知.
例4 如图,已知:AB是⊙O的直径,点C在⊙O上,且∠CAB=300,BD=OB,D在AB的延长线上.
求证:DC是⊙O的切线 证明:连结OC、BC. ∵OA=OC, ∴∠A=∠1=∠300.
∴∠BOC=∠A+∠1=60. 又∵OC=OB,
∴△OBC是等边三角形. ∴OB=BC. ∵OB=BD, ∴OB=BC=BD. ∴OC⊥CD. ∴DC是⊙O的切线.
D 0
说明:此题是根据圆周角定理的推论3证明垂直的,此题解法颇多,但这种方法较好.
例5 如图,AB是⊙O的直径,CD⊥AB,且OA=OD·OP. 求证:PC是⊙O的切线. 证明:连结OC
∵OA2=OD·OP,OA=OC, ∴OC2=OD·OP,
2
4
OCOD?OPOC.
又∵∠1=∠1, ∴△OCP∽△ODC. ∴∠OCP=∠ODC. ∵CD⊥AB, ∴∠OCP=90. ∴PC是⊙O的切线.
说明:此题是通过证三角形相似证明垂直的
例6 如图,ABCD是正方形,G是BC延长线上一点,AG交BD于E,交CD于F.
求证:CE与△CFG的外接圆相切.
分析:此题图上没有画出△CFG的外接圆,但△CFG是直角三角形,圆心在斜边FG的中点,为此我们取FG的中点O,连结OC,证明CE⊥OC即可得解.
证明:取FG中点O,连结OC.
∵ABCD是正方形,
0
∴BC⊥CD,△CFG是Rt△ ∵O是FG的中点, ∴O是Rt△CFG的外心. ∵OC=OG, ∴∠3=∠G, ∵AD∥BC, ∴∠G=∠4.
∵AD=CD,DE=DE,
∠ADE=∠CDE=450, ∴△ADE≌△CDE(SAS)
5