【备选2】2点钟以后,什么时刻分针与时针第一次成直角?
【解析】 根据题意可知,2点时,时针与分针成60度,第一次垂直需要90度,即分针追了90+60=150(度),
10(分)
【备选3】一列快车和一列慢车相向而行,快车的车长是280米,慢车的车长是385米,坐在快车上的人看
见慢车驶过的时间是11秒,那么坐在慢车上的人看见块车驶过的时间是多少秒?
【解析】 8s,可以把车上的人给抽象出来看成一点,那么就类同题1。得出快车和慢车的速度和是35,反之,由车长
和速度得到280/35=8
【备选4】甲、乙两艘小游艇,静水中甲艇每小时行72千米,乙艇每小时行10千米.现甲、乙两艘小游艇于
同一时刻相向出发,甲艇从下游上行,乙艇从相距18千米的上游下行,两艇于途中相遇后,又经过4小时,甲艇到达乙艇的出发地.问水流速度为每小时多少千米?
【解析】 两游艇相向而行时,速度和等于它们在静水中的速度和,所以它们从出发到相遇所用的时间为12小时.相遇
后又经过4小时,甲艇到达乙艇的出发地,说明甲艇逆水行驶18千米需要10小时,那么甲艇的逆水速度为12(千米/小时),那么水流速度为53(千米/小时)
第八讲 行程问题(二)
教学目标:
1、 能够利用以前学习的知识理清变速变道问题的关键点;
2、 能够利用线段图、算术、方程方法解决变速变道等综合行程题; 3、 变速变道问题的关键是如何处理“变”;
4、 掌握寻找等量关系的方法来构建方程,利用方程解行程题.
知识精讲:
比例的知识是小学数学最后一个重要内容,从某种意义上讲仿佛扮演着一个小学“压轴知识点”的角色。
从一个工具性的知识点而言,比例在解很多应用题时有着“得天独厚”的优势,往往体现在方法的灵活性和思维的巧妙性上,使得一道看似很难的题目变得简单明了。比例的技巧不仅可用于解行程问题,对于工程问题、分数百分数应用题也有广泛的应用。
我们常常会应用比例的工具分析2个物体在某一段相同路线上的运动情况,我们将甲、乙的速度、时间、路程分别用v甲,v乙;t甲,t乙;s甲,s乙来表示,大体可分为以下两种情况:
1. 当2个物体运行速度在所讨论的路线上保持不变时,经过同一段时间后,他们走过的路程之比就等于他们的
速度之比。
?s甲?v甲?t甲s甲s乙,这里因为时间相同,即,所以由 t?t?tt?,t??乙乙甲甲v甲v乙?s乙?v乙?t乙s甲s乙s甲v甲得到t?,,甲乙在同一段时间t内的路程之比等于速度比 ??v甲v乙s乙v乙2. 当2个物体运行速度在所讨论的路线上保持不变时,走过相同的路程时,2个物体所用的时间之比等于他们
速度的反比。
?s甲?v甲?t甲,这里因为路程相同,即s甲?s乙?s,由s甲?v甲?t甲,s乙?v乙?t乙 ??s乙?v乙?t乙得s?v甲?t甲?v乙?t乙,行程问题常用的解题方法有
v甲t乙?,甲乙在同一段路程s上的时间之比等于速度比的反比。 v乙t甲11
⑴公式法
即根据常用的行程问题的公式进行求解,这种方法看似简单,其实也有很多技巧,使用公式不仅包括公式的原形,也包括公式的各种变形形式;有时条件不是直接给出的,这就需要对公式非常熟悉,可以推知需要的条件; ⑵图示法
在一些复杂的行程问题中,为了明确过程,常用示意图作为辅助工具.示意图包括线段图和折线图.图示法即画出行程的大概过程,重点在折返、相遇、追及的地点.另外在多次相遇、追及问题中,画图分析往往也是最有效的解题方法; ⑶比例法
行程问题中有很多比例关系,在只知道和差、比例时,用比例法可求得具体数值.更重要的是,在一些较复杂的题目中,有些条件(如路程、速度、时间等)往往是不确定的,在没有具体数值的情况下,只能用比例解题; ⑷分段法
在非匀速即分段变速的行程问题中,公式不能直接适用.这时通常把不匀速的运动分为匀速的几段,在每一段中用匀速问题的方法去分析,然后再把结果结合起来; ⑸方程法
在关系复杂、条件分散的题目中,直接用公式或比例都很难求解时,设条件关系最多的未知量为未知数,抓住重要的等量关系列方程常常可以顺利求解.
例题精讲:
模块一、时间相同速度比等于路程比
【例 33】 甲、乙二人分别从 A、 B 两地同时出发,相向而行,甲、乙的速度之比是 4 : 3,二人相遇后继续行进,
甲到达 B 地和乙到达 A地后都立即沿原路返回,已知二人第二次相遇的地点距第一次相遇的地点 30千米,则 A、 B 两地相距多少千米?
【解析】 两个人同时出发相向而行,相遇时时间相等,路程比等于速度之比,即两个人相遇时所走过的路程比为 4 :
3.第一次相遇时甲走了全程的4/7;第二次相遇时甲、乙两个人共走了 3个全程,三个全程中甲走了?3?1个全程,与第一次相遇地点的距离为
47575422?(1?)?个全程.所以 A、 B两地相距30??105 (千米). 7777
【例 34】 B地在A,C两地之间.甲从B地到A地去送信,甲出发10分后,乙从B地出发到C地去送另一封信,
乙出发后10分,丙发现甲、乙刚好把两封信拿颠倒了,于是他从B地出发骑车去追赶甲和乙,以便把信调过来.已知甲、乙的速度相等,丙的速度是甲、乙速度的3倍,丙从出发到把信调过来后返回B地至少要用多少时间。
【解析】 根据题意当丙发现甲、乙刚好把两封信拿颠倒了此时甲、乙位置如下:
A10分钟10分钟B10分钟C
因为丙的速度是甲、乙的3倍,分步讨论如下:
(1) 若丙先去追及乙,因时间相同丙的速度是乙的3倍,比乙多走两倍乙走需要10分钟,所以丙用时间
为:10÷(3-1)=5(分钟)此时拿上乙拿错的信
A10分钟10分钟B10分钟5分钟5分钟C
12
当丙再回到B点用5分钟,此时甲已经距B地有10+10+5+5=30(分钟),同理丙追及时间为30÷(3-1)=15(分钟),此时给甲应该送的信,换回乙应该送的信 在给乙送信,此时乙已经距B地:10+5+5+15+15=50(分钟), 此时追及乙需要:50÷(3-1)=25(分钟),返回B地需要25分钟 所以共需要时间为5+5+15+15+25+25=90(分钟)
(2) 同理先追及甲需要时间为120分钟
【例 35】 (“圆明杯”数学邀请赛) 甲、乙两人同时从A、B两点出发,甲每分钟行80米,乙每分钟行60米,出发
一段时间后,两人在距中点的C处相遇;如果甲出发后在途中某地停留了7分钟,两人将在距中点的D处
相遇,且中点距C、D距离相等,问A、B两点相距多少米?
【分析】 甲、乙两人速度比为80:60?4:3,相遇的时候时间相等,路程比等于速度之比,相遇时甲走了全程的
乙走了全程的
4,73.第二次甲停留,乙没有停留,且前后两次相遇地点距离中点相等,所以第二次乙行了全程743的,甲行了全程的.由于甲、乙速度比为4:3,根据时间一定,路程比等于速度之比,所以甲行走期间773343311乙走了?,所以甲停留期间乙行了???,所以A、B两点的距离为60?7?=1680(米).
7477444
【例 36】 甲、乙两车分别从 A、 B 两地同时出发,相向而行.出发时,甲、乙的速度之比是 5 : 4,相遇后甲的速
度减少 20%,乙的速度增加 20%.这样当甲到达 B 地时,乙离 A地还有 10 千米.那么 A、B 两地相距多少千米? 【解析】 两车相遇时甲走了全程的
54,乙走了全程的,之后甲的速度减少 20%,乙的速度增加 20%,此时甲、乙99468的速度比为5?(1?20%):4?(1?20%)?5:6 ,所以甲到达 B 地时,乙又走了??,距离 A地
95155811???450 (千米). ,所以 A、 B 两地的距离为10?9154545
【例 37】 早晨,小张骑车从甲地出发去乙地.下午 1 点,小王开车也从甲地出发,前往乙地.下午 2 点时两人之
间的距离是 15 千米.下午 3 点时,两人之间的距离还是 l5 千米.下午 4 点时小王到达乙地,晚上 7 点小张到达乙地.小张是早晨几点出发?
【解析】 从题中可以看出小王的速度比小张块.下午 2 点时两人之间的距离是 l5 千米.下午 3 点时,两人之间的
距离还是 l5 千米,所以下午 2 点时小王距小张 15 千米,下午 3 点时小王超过小张 15千米,可知两人的速度差是每小时 30 千米.由下午 3 点开始计算,小王再有 1 小时就可走完全程,在这 1 小时当中,小王比小张多走 30 千米,那小张 3 小时走了15 30 45? ? 千米,故小张的速度是 45 ÷3 =15千米/时,小王的速度是15 +30 =45千米/时.全程是 45 ×3 =135千米,小张走完全程用了135 +15= 9小时,所以他是上午 10 点出发的。
【例 38】 从甲地到乙地,需先走一段下坡路,再走一段平路,最后再走一段上坡路。其中下坡路与上坡路的距离相
等。陈明开车从甲地到乙地共用了 3 小时,其中第一小时比第二小时多走 15 千米,第二小时比第三小时多走 25 千米。如果汽车走上坡路比走平路每小时慢 30 千米,走下坡路比走平路每小时快 15 千米。那么甲乙两地相距多少千米?
【解析】 ⑴由于3个小时中每个小时各走的什么路不明确,所以需要先予以确定.
从甲地到乙地共用3小时,如果最后一小时先走了一段平路再走上坡路,也就是说走上坡路的路程不需要1小时,那么由于下坡路与上坡路距离相等,而下坡速度更快,所以下坡更用不了1小时,这说明第一小时既走完了下坡路,又走了一段平路,而第二小时则是全在走平路.这样的话,由于下坡速度大于平路速度,所以第一小时走的路程小于以下坡的速度走1小时的路程,而这个路程恰好比以平路的速度走1小时的路程(即
13
第二小时走的路程)多走15千米,所以这样的话第一小时走的路程比第二小时走的路程多走的少于15千米,不合题意,所以假设不成立,即第三小时全部在走上坡路.
如果第一小时全部在走下坡路,那么第二小时走了一段下坡路后又走了一段平路,这样第二小时走的路程将大于以平路的速度走1小时的路程,而第一小时走的路程比第二小时走的路程多走的少于15千米,也不合题意,所以假设也不成立,故第一小时已走完下坡路,还走了一段平路.
所以整个行程为:第一小时已走完下坡路,还走了一段平路;第二小时走完平路,还走了一段上坡路;第三小时全部在走上坡路.
⑵由于第二小时比第三小时多走25千米,而走平路比走上坡路的速度快每小时30千米.所以第二小时内用51在走平路上的时间为25?30?小时,其余的小时在走上坡路;
66因为第一小时比第二小时多走了15千米,而
11小时的下坡路比上坡路要多走?30?15???7.5千米,那么第
661121一小时余下的下坡路所用的时间为?15?7.5??15?小时,所以在第一小时中,有??小时是在下坡路
26321小时是在平路上走的. 3215717因此,陈明走下坡路用了小时,走平路用了??小时,走上坡路用了1??小时.
366663上走的,剩余的
⑶因为下坡路与上坡路的距离相等,所以上坡路与下坡路的速度比是
27:?4:7.那么下坡路的速度为36?30?15??米.
7?105千米/时,平路的速度是每小时105?15?90千米,上坡路的速度是每小时90?30?60千7?4277那么甲、乙两地相距105??90??60??245(千米).
366
模块二、路程相同速度比等于时间的反比
【例 39】 甲、乙两人同时从A地出发到B地,经过3小时,甲先到B地,乙还需要1小时到达B地,此时甲、乙共
行了35千米.求A,B两地间的距离.
【分析】 甲用3小时行完全程,而乙需要4小时,说明两人的速度之比为4:3,那么在3小时内的路程之比也是4:3;
4又两人路程之和为35千米,所以甲所走的路程为35??20千米,即A,B两地间的距离为20千米.
3?4
【例 40】 在一圆形跑道上,甲从 A 点、乙从 B 点同时出发反向而行,6 分后两人相遇,再过4 分甲到达 B 点,
又过 8 分两人再次相遇.甲、乙环行一周各需要多少分?
【解析】 由题意知,甲行 4 分相当于乙行 6 分.(抓住走同一段路程时间或速度的比例关系)
从第一次相遇到再次相遇,两人共走一周,各行 12 分,而乙行 12 分相当于甲行 8 分,所以甲环行一周需 12+8=20(分),乙需 20÷4×6=30(分).
【例 41】 上午 8 点整,甲从 A地出发匀速去 B 地,8 点 20 分甲与从 B 地出发匀速去 A地的乙相遇;相遇后
甲将速度提高到原来的 3 倍,乙速度不变;8 点 30 分,甲、乙两人同时到达各自的目的地.那么,乙从
14
B 地出发时是 8 点几分.
【解析】 甲、乙相遇时甲走了 20 分钟,之后甲的速度提高到原来的 3 倍,又走了 10 分钟到达目的地,根据路程
一定,时间比等于速度的反比,如果甲没提速,那么后面的路甲需要走10× 3= 30分钟,所以前后两段路程的比为 20 : 30 =2 : 3,由于甲走 20 分钟的路程乙要走 10 分钟,所以甲走 30 分钟的路程乙要走 15 分钟,也就是说与甲相遇时乙已出发了 15 分钟,所以乙从 B 地出发时是 8 点5 分.
【例 42】 小芳从家到学校有两条一样长的路,一条是平路,另一条是一半上坡路,一半下坡路.小芳上学走这两条
路所用的时间一样多.已知下坡的速度是平路的1.6 倍,那么上坡的速度是平路速度的多少倍?
【解析】 设小芳上学路上所用时间为 2,那么走一半平路所需时间是1.由于下坡路与一半平路的长度相同,根据路5511?2??程一定,时间比等于速度的反比,走下坡路所需时间是1?1.6,因此,走上坡路需要的时间是,118888?8:11,所以,上坡速度是平路速度的那么,上坡速度与平路速度的比等于所用时间的反比,为1:倍. 811
3【例 43】 一辆汽车从甲地开往乙地,每分钟行750米,预计50分钟到达.但汽车行驶到路程的时,出了故障,用
55分钟修理完毕,如果仍需在预定时间内到达乙地,汽车行驶余下的路程时,每分钟必须比原来快多少米?
333【分析】 当以原速行驶到全程的时,总时间也用了,所以还剩下50?(1?)?20分钟的路程;修理完毕时还剩下
55520?5?15分钟,在剩下的这段路程上,预计时间与实际时间之比为20:15?4:3,根据路程一定,速度比等
4于时间的反比,实际的速度与预定的速度之比也为4:3,因此每分钟应比原来快750??750?250米.
3小结:本题也可先求出相应的路程和时间,再采用公式求出相应的速度,最后计算比原来快多少,但不如采用比例法简便.
【例 44】 (2008“我爱数学夏令营”数学竞赛)一列火车出发1小时后因故停车0.5小时,然后以原速的
终到达目的地晚1.5小时.若出发1小时后又前进90公里因故停车0.5小时,然后同样以原速的
3前进,最43前进,则4到达目的地仅晚1小时,那么整个路程为________公里.
3【解析】 如果火车出发1小时后不停车,然后以原速的前进,最终到达目的地晚1.5?0.5?1小时,在一小时以后的
4那段路程,原计划所花的时间与实际所花的时间之比为3:4,所以原计划要花1??4?3??3?3小时,现在要
3前进,则到达目的地仅4晚1?0.5?0.5小时,在一小时以后的那段路程,原计划所花的时间与实际所花的时间之比为3:4,所以原计划要花0.5??4?3??3?1.5小时,现在要花0.5??4?3??4?2小时.所以按照原计划90公里的路程火车要用花1??4?3??4?4小时,若出发1小时后又前进90公里不停车,然后同样以原速的
3?1.5?1.5小时,所以火车的原速度为90?1.5?60千米/小时,整个路程为60??3?1??240千米.
【例 45】 王叔叔开车从北京到上海,从开始出发,车速即比原计划的速度提高了1/9,结果提前一个半小时到达;返
回时,按原计划的速度行驶 280 千米后,将车速提高1/6,于是提前1 小时 40 分到达北京.北京、上海两市间的路程是多少千米?
【解析】 从开始出发,车速即比原计划的速度提高了1/9,即车速为原计划的10/9,则所用时间为原计划的1÷10/9=9/10,
即比原计划少用1/10的时间,所以一个半小时等于原计划时间的1/10,原计划时间为:1.5÷1/10=15(小时);按原计划的速度行驶 280 千米后,将车速提高1/6,即此后车速为原来的7/6,则此后所用时间为原计划的1÷7/6=6/7,即此后比原计划少用1/7的时间,所以1 小时 40 分等于按原计划的速度行驶 280 千米后余下时间的1/7,则按原计划的速度行驶 280 千米后余下的时间为: 5/3÷1/7=35/3(小时),所以,原计划的速度为:84(千米/时),北京、上海两市间的路程为:84 ×15= 1260(千米).
【例 46】 一辆汽车从甲地开往乙地,如果车速提高 20%可以提前1小时到达.如果按原速行驶一段距离后,再将速
度提高 30% ,也可以提前1小时到达,那么按原速行驶了全部路程的几分之几?
15