数学-行程问题(5)

2019-04-23 00:00

通常,“追及问题”要考虑速度差.

例1 小轿车的速度比面包车速度每小时快6千米,小轿车和面包车同时从学校开出,沿着同一路线行驶,小轿车比面包车早10分钟到达城门,当面包车到达城门时,小轿车已离城门9千米,问学校到城门的距离是多少千米? 解:先计算,从学校开出,到面包车到达城门用了多少时间.

此时,小轿车比面包车多走了9千米,而小轿车与面包车的速度差是6千米/小时,因此

所用时间=9÷6=1.5(小时).

小轿车比面包车早10分钟到达城门,面包车到达时,小轿车离城门9千米,说明小轿车的速度是

面包车速度是 54-6=48(千米/小时). 城门离学校的距离是

48×1.5=72(千米).

答:学校到城门的距离是72千米.

例2 小张从家到公园,原打算每分种走50米.为了提早10分钟到,他把速度加快,每分钟走75米.问家到公园多远?

解一:可以作为“追及问题”处理.

假设另有一人,比小张早10分钟出发.考虑小张以75米/分钟速度去追赶,追上所需时间是

50 ×10÷(75- 50)= 20(分钟)·

因此,小张走的距离是

75× 20= 1500(米).

答:从家到公园的距离是1500米. 还有一种不少人采用的方法.

家到公园的距离是

一种解法好不好,首先是“易于思考”,其次是“计算方便”.那么你更喜欢哪一种解法呢?对不同的解法进行比较,能逐渐形成符合你思维习惯的解题思路.

例3 一辆自行车在前面以固定的速度行进,有一辆汽车要去追赶.如果速度是30千米/小时,要1小时才能追上;如果速度是 35千米/小时,要 40分钟才能追上.问自行车的速度是多少? 解一:自行车1小时走了

21

30×1-已超前距离,

自行车40分钟走了

自行车多走20分钟,走了

因此,自行车的速度是

答:自行车速度是20千米/小时.

解二:因为追上所需时间=追上距离÷速度差

1小时与40分钟是3∶2.所以两者的速度差之比是2∶3.请看下面示意图:

马上可看出前一速度差是15.自行车速度是

35- 15= 20(千米/小时).

解二的想法与第二讲中年龄问题思路完全类同.这一解法的好处是,想清楚后,非常便于心算.

例4 上午8点8分,小明骑自行车从家里出发,8分钟后,爸爸骑摩托车去追他,在离家4千米的地方追上了他.然后爸爸立即回家,到家后又立刻回头去追小明,再追上小明的时候,离家恰好是8千米,这时是几点几分? 解:画一张简单的示意图:

图上可以看出,从爸爸第一次追上到第二次追上,小明走了

8-4=4(千米).

而爸爸骑的距离是 4+ 8= 12(千米).

这就知道,爸爸骑摩托车的速度是小明骑自行车速度的 12÷4=3(倍).按照这个倍数计算,小明骑8千米,爸爸可以骑行8×3=24(千米).

22

但事实上,爸爸少用了8分钟,骑行了

4+12=16(千米).

少骑行24-16=8(千米).

摩托车的速度是1千米/分,爸爸骑行16千米需要16分钟.

8+8+16=32.

答:这时是8点32分. 下面讲“相遇问题”.

小王从甲地到乙地,小张从乙地到甲地,两人在途中相遇,实质上是小王和小张一起走了甲、乙之间这段距离.如果两人同时出发,那么 甲走的距离+乙走的距离

=甲的速度×时间+乙的速度×时间 =(甲的速度+乙的速度)×时间.

“相遇问题”,常常要考虑两人的速度和.

例5 小张从甲地到乙地步行需要36分钟,小王骑自行车从乙地到甲地需要12分钟.他们同时出发,几分钟后两人相遇?

解:走同样长的距离,小张花费的时间是小王花费时间的 36÷12=3(倍),因此自行车的速度是步行速度的3倍,也可以说,在同一时间内,小王骑车走的距离是小张步行走的距离的3倍.如果把甲地乙地之间的距离分成相等的4段,小王走了3段,小张走了1段,小张花费的时间是

36÷(3+1)=9(分钟).

答:两人在9分钟后相遇.

例6 小张从甲地到乙地,每小时步行5千米,小王从乙地到甲地,每小时步行4千米.两人同时出发,然后在离甲、乙两地的中点1千米的地方相遇,求甲、乙两地间的距离. 解:画一张示意图

离中点1千米的地方是A点,从图上可以看出,小张走了两地距离的一半多1千米,小王走了两地距离的一半少1千米.从出发到相遇,小张比小王多走了2千米

小张比小王每小时多走(5-4)千米,从出发到相遇所用的时间是

2÷(5-4)=2(小时).

因此,甲、乙两地的距离是

(5+ 4)×2=18(千米).

23

本题表面的现象是“相遇”,实质上却要考虑“小张比小王多走多少?”岂不是有“追及”的特点吗?对小学的应用题,不要简单地说这是什么问题.重要的是抓住题目的本质,究竟考虑速度差,还是考虑速度和,要针对题目中的条件好好想一想.千万不要“两人面对面”就是“相遇”,“两人一前一后”就是“追及”. 请再看一个例子.

例7 甲、乙两车分别从A,B两地同时出发,相向而行,6小时后相遇于C点.如果甲车速度不变,乙车每小时多行5千米,且两车还从A,B两地同时出发相向而行,则相遇地点距C点12千米;如果乙车速度不变,甲车每小时多行5千米,且两车还从A,B两地同时出发相向而行,则相遇地点距C点16千米.求A,B两地距离. 解:先画一张行程示意图如下

设乙加速后与甲相遇于D点,甲加速后与乙相遇于E点.同时出发后的相遇时间,是由速度和决定的.不论甲加速,还是乙加速,它们的速度和比原来都增加5千米,因此,不论在D点相遇,还是在E点相遇,所用时间是一样的,这是解决本题的关键.

下面的考虑重点转向速度差.

在同样的时间内,甲如果加速,就到E点,而不加速,只能到 D点.这两点距离是 12+ 16= 28(千米),加速与不加速所形成的速度差是5千米/小时.因此,在D点 (或E点)相遇所用时间是

28÷5= 5.6(小时).

比C点相遇少用 6-5.6=0.4(小时).

甲到达D,和到达C点速度是一样的,少用0.4小时,少走12千米,因此甲的速度是

12÷0.4=30(千米/小时).

同样道理,乙的速度是

16÷0.4=40(千米/小时).

A到 B距离是(30+ 40)×6= 420(千米). 答: A,B两地距离是 420千米.

很明显,例7不能简单地说成是“相遇问题”.

例8 如图,从A到B是1千米下坡路,从B到C是3千米平路,从C到D是2.5千米上坡路.小张和小王步行,下坡的速度都是6千米/小时,平路速度都是4千米/小时,上坡速度都是2千米/小时.

问:(1)小张和小王分别从A, D同时出发,相向而行,问多少时间后他们相遇? (2)相遇后,两人继续向前走,当某一个人达到终点时,另一人离终点还有多少千米?

24

解:(1)小张从 A到 B需要 1÷6×60= 10(分钟);小王从 D到 C也是下坡,需要 2.5÷6×60= 25(分钟);当小王到达 C点时,小张已在平路上走了 25-10=15(分钟),走了

因此在 B与 C之间平路上留下 3- 1= 2(千米)由小张和小王共同相向而行,直到相遇,所需时间是

2 ÷(4+ 4)×60= 15(分钟).

从出发到相遇的时间是

25+ 15= 40 (分钟).

(2)相遇后,小王再走30分钟平路,到达B点,从B点到 A点需要走 1÷2×60=30分钟,即他再走 60分钟到达终点.

小张走15分钟平路到达D点,45分钟可走

小张离终点还有2.5-1.5=1(千米).

答:40分钟后小张和小王相遇.小王到达终点时,小张离终点还有1千米.

30道奥数行程问题+详解

行程问题核心公式:S=V×T,因此总结如下: 当路程一定时,速度和时间成反比 当速度一定时,路程和时间成正比 当时间一定时,路程和速度成正比

从上述总结衍伸出来的很多总结如下: 追击问题:路程差÷速度差=时间 相遇问题:路程和÷速度和=时间

流水问题:顺水速度=船速+水流速度;逆水速度=船速-水流速度 水流速度=(顺水速度-逆水速度)÷2 船 速=(顺水速度-逆水速度)×2 两岸问题:S=3A-B,两次相遇相隔距离=2×(A-B)

电梯问题:S=(人与电梯的合速度)×时间=(人’与电梯的合速度)×时间 平均速度:V平=2(V1×V2)÷(V1+V2)

1、邮递员早晨7时出发送一份邮件到对面的山坳里,从邮局开始要走12千米的上坡路,8千米的下坡路。他上坡时每小时走4千米,下坡时每小时走5千米,到达目的地后停留1小时,又从原路返回,邮递员什么时候可以回到邮局?

2、小明从甲地到乙地,去时每小时走6千米,回时每小时走9千米,来回共用5小时。小明来回共走了多少千米?

25


数学-行程问题(5).doc 将本文的Word文档下载到电脑 下载失败或者文档不完整,请联系客服人员解决!

下一篇:工程监理合同

相关阅读
本类排行
× 注册会员免费下载(下载后可以自由复制和排版)

马上注册会员

注:下载文档有可能“只有目录或者内容不全”等情况,请下载之前注意辨别,如果您已付费且无法下载或内容有问题,请联系我们协助你处理。
微信: QQ: