北师大版初中数学知识点归纳
10、角平分线性质:
角平分线上的点到角两边的距离相等。
C ∵OA平分∠CAD OE⊥AC,OF⊥AD ∴OE=OF D B F
11、垂直平分线性质:垂直平分线上的点到线段两端点的距离相等 。 ∵OC垂直平分AB ∴AC=BC
12、轴对称的性质
C
1、两个图形沿一条直线对折后,能够重合的点称为对应点(对称点),能够重合的线段称为对应线段,能够重合的角称为对应角。2、关于某条直线对称的两个图形是全等图形。 2、如果两个图形关于某条直线对称,那么对应点所连的线段被对称轴垂直平分。 3、如果两个图形关于某条直线对称,那么对应线段、对应角都相等。 13、镜面对称
1.当物体正对镜面摆放时,镜面会改变它的左右方向; 2.当垂直于镜面摆放时,镜面会改变它的上下方向;
3.如果是轴对称图形,当对称轴与镜面平行时,其镜子中影像与原图一样; 学生通过讨论,可能会找出以下解决物体与像之间相互转化问题的办法: (1)利用镜子照(注意镜子的位置摆放);(2)利用轴对称性质; (3)可以把数字左右颠倒,或做简单的轴对称图形;
(4)可以看像的背面; (5)根据前面的结论在头脑中想象。
北师大版初中数学知识点归纳 第 16 页 共 41 页
北师大版初中数学知识点归纳
北师大版初中数学八年级上册知识点汇总
第一章 勾股定理
222※勾股定理:直角三角形两直角边的平和等于斜边的平方。即:a?b?c。
222勾股定理逆定理:如果三角形的三边长a,b,c满足a?b?c,那么这个三角形是直角三
角形。
满足条件a?b?c的三个正整数,称为勾股数。 常见的勾股数组有:(3,4,5);(5,12,13);(7,24,25);(8,15,17);(9,40,41);(20,21,29);??(这些勾股数组的倍数仍是勾股数)
222第二章 实数
1.※平方根和算术平方根的概念及其性质:
(1)概念:如果x2?a,那么x是a的平方根,记作:?a;其中a叫做a的算术平方根。 (2)性质:①当a≥0时,a≥0;当a<0时,a无意义;
2②a=a; ③a2?a。
2.立方根的概念及其性质:
(1)概念:若x3?a,那么x是a的立方根,记作:3a;
??(2)性质:①3a3?a;
3②3a?a; ③3?a=?3a
3.※实数的概念及其分类:
??(1)概念:实数是有理数和无理数的统称; (2)分类:按定义分为有理数可分为整数的分数;按性质分为正数、负数和零。
无理数就是无限不循环小数;小数可分为有限小
数、无限循环小数和无限不循环小数;其中有限小数和无限循环小数称为分数。
4.与实数有关的概念: 在实数范围内,相反数,倒数,绝对值的意义与有理数
北师大版初中数学知识点归纳 第 17 页 共 41 页
北师大版初中数学知识点归纳
范围内的意义完全一致;在实数范围内,有理数的运算法则和运算律同样成立。
每一个实数都可以用数轴上的一个点来表示;反过来,数轴上的每一个点都表示一个实数,
即实数和数轴上的点是一一对应的。因此,数轴正好可以被实数填满。
第三章
图形的平移与旋转
平移:在平面内,将一个图形沿某个方向移动一定距离,这样的图形运动称为平移。
平移的基本性质:经过平移,对应线段、对应角分别相等;对应点所连的线段平行且相等。
旋转:在平面内,将一个图形绕一个定点沿某个方向转动一个角度,这样的图形运动称为旋
转。
这个定点叫旋转中心,转动的角度叫旋转角。
旋转的性质:旋转后的图形与原图形的大小和形状相同;
旋转前后两个图形的对应点到旋转中心的距离相等; 对应点到旋转中心的连线所成的角度彼此相等。
第四章 四平边形性质探索
※平行四边的定义:两线对边分别平行的四边形叫做平行四边形,平行四边形不相邻的两顶
点连成的线段叫做它的对角线。
※平行四边形的性质:平行四边形的对边相等,对角相等,对角线互相平分。
※平行四边形的判别方法:两组对边分别平行的四边形是平行四边形。
两组对边分别相等的四边形是平行四边形。 一组对边平行且相等的四边形是平行四边形。 两组对角分别相等的四边形是平行四边形。 两条对角线互相平分的四边形是平行四边形。
※平行线之间的距离:若两条直线互相平行,则其中一条直线上任意两点到另一条直线的距离相等。这个距离称为平行线之间的距离。
※菱形的定义:一组邻边相等的平行四边形叫做菱形。
※菱形的性质:具有平行四边形的性质,且四条边都相等,两条对角线互相垂直平分,每一条对
角线平分一组对角。
菱形是轴对称图形,每条对角线所在的直线都是对称轴。
北师大版初中数学知识点归纳 第 18 页 共 41 页
北师大版初中数学知识点归纳
※菱形的判别方法:一组邻边相等的平行四边形是菱形。
对角线互相垂直的平行四边形是菱形。 四条边都相等的四边形是菱形。
※矩形的定义:有一个角是直角的平行四边形叫矩形。矩形是特殊的平行四边形。
※矩形的性质:具有平行四边形的性质,且对角线相等,四个角都是直角。(矩形是轴对称图
形,有两条对称轴)
※矩形的判定:有一个内角是直角的平行四边形叫矩形(根据定义)。
对角线相等的平行四边形是矩形。 四个角都相等的四边形是矩形。
推论:直角三角形斜边上的中线等于斜边的一半。
※正方形的定义:一组邻边相等的矩形叫做正方形。
※正方形的性质:正方形具有平行四边形、矩形、菱形的一切性质。(正方形是轴对称图形,有两条对称轴)
※正方形常用的判定:
有一个内角是直角的菱形是正方形; 邻边相等的矩形是正方形; 对角线相等的菱形是正方形; 对角线互相垂直的矩形是正方形。
正方形、矩形、菱形和平行边形四者之间的关系(如图所示):
※梯形定义:一组对边平行且另一组对边不平行的四边形叫做梯形。
※两条腰相等的梯形叫做等腰梯形。
※一条腰和底垂直的梯形叫做直角梯形。
※等腰梯形的性质:等腰梯形同一底上的两个内角相等,对角线相等。
同一底上的两个内角相等的梯形是等腰梯形。
北师大版初中数学知识点归纳 第 19 页 共 41 页
北师大版初中数学知识点归纳
※多边形内角和:n边形的内角和等于(n-2)·180°
※多边形的外角和都等于360°
※在平面内,一个图形绕某个点旋转180°,如果旋转前后的图形互相重合,那么这个图开叫做中心对称图形。
※中心对称图形上的每一对对应点所连成的线段被对称中心平分。
第五章 位置的确定
※平面直角坐标系概念:在平面内,两条互相垂直且有公共原点的数轴组成平面直角坐标系,水平的数轴叫x轴或横轴;铅垂的数轴叫y轴或纵轴,两数轴的交点O称为原点。
※点的坐标:在平面内一点P,过P向x轴、y轴分别作垂线,垂足在x轴、y轴上对应的数a、b
分别叫P点的横坐标和纵坐标,则有序实数对(a、b)叫做P点的坐标。
※如何根据已知条件建立适当的直角坐标系?
根据已知条件建立坐标系的要求是尽量使计算方便,一般地没有明确的方法,但有以下几条常用的方法:①以某已知点为原点,使它坐标为(0,0);②以图形中某线段所在直线为x轴(或y轴);③以已知线段中点为原点;④以两直线交点为原点;⑤利用图形的轴对称性以对称轴为y轴等。
※图形“纵横向伸缩”的变化规律:
A、将图形上各个点的坐标的纵坐标不变,而横坐标分别变成原来的n倍时,所得的图形比原来的图形在横向:①当n>1时,伸长为原来的n倍;②当0 ※图形“纵横向位置”的变化规律: A、将图形上各个点的坐标的纵坐标不变,而横坐标分别加上a,所得的图形形状、大小不变,而位置向右(a>0)或向左(a<0)平移了|a|个单位。 B、将图形上各个点的坐标的横坐标不变,而纵坐标分别加上b,所得的图形形状、大小不变,而位置向上(b>0)或向下(b<0)平移了|b|个单位。 ※图形“倒转与对称”的变化规律: A、将图形上各个点的横坐标不变,纵坐标分别乘以-1,所得的图形与原来的图形关于x轴对称。 B、将图形上各个点的纵坐标不变,横坐标分别乘以-1,所得的图形与原来的图形关于y轴对称。 ※图形“扩大与缩小”的变化规律: 将图形上各个点的纵、横坐标分别变原来的n倍(n>0),所得的图形与原图形相比,形状不 北师大版初中数学知识点归纳 第 20 页 共 41 页