[数学]湖北省荆州市2018届高三第一次质量检查试卷(理)(2)

2019-06-05 09:34

【参考答案】

一、选择题

1-5:BDCAD 6-10:AACDC 11-12:BC 二、填空题

13.e?1 14.5?26 15.153 16.?2,??? 三、解答题

17.解:f?x??23sinxcosx?2sinx?2sin?2x?2??π???1 6?π6π1ππ2π?sin(2x?)??,又?x?(?,π),?x??或0或.

62233π(2)由题知g(x)?2cosx?1,则h(x)?g(?x)=2sinx?1,

2(1)由f(x)?0,即2sin(2x?)?1?0,

?π2π??1??x???,?,?sinx???,1?,故函数h(x)的值域为?0,3?.

?2??63?18.(1)证明:当n?1时,a1?1?2a1,?a1?1.

?Sn?n?2an,n?N?,?n?2时,Sn?1?n?1?2an?1,

两式相减得:an?1?2an?2an?1,即an?2an?1?1,?an?1?2(an?1?1), ∴数列?an?1?为以2为首项,2为公比的等比数列,

?an?1?2n,?an?2n?1,n?N?.

nn(2)解:bn?nan?n?n2?1?n?n?2,

???Tn?1?21?2?22?3?23???n?2n, ?2Tn?1?22?2?23????n?1??2n?n?2n?1,

123nn?1两式相减得:?Tn?2?2?2???2?n?2,

?Tn??n?1??2n?1?2.

n-1nTn?2?2?1009, ?2018可化为:nn

n?1nn2?1n?2,?bn?1?bn?2设bn??2?0,?数列?bn?为递增数列, nn?n?b10?91010?2?1009,b11??211?1009, 1011Tn?2?2018的n的最小值为11. n∴满足不等式

19.解:(1)

OA?OB,CA?CB,?O、C两点在线段AB的垂直平分线上.

1??BCO??ACO??BCA?300,又?BOC?1200,则??300.

2OCAB?OC?23sin?600???, ?(2)在?B由正弦定理有:,OC中,

sin?CBOsin?BOC11又S?BOC?BC?OC?sin?BCO;S?AOC?AC?OC?sin?ACO,

220??9sin2??93,???0,600? ?S????33sin?600????sin??sin60??????24故当sin2??900,即??450时S???取得最大值

92?34??.

2(x2?4)?2x2x?2(x?2)(x?2)?,x??0,24?, 20.解:(1)t?(x)?2222(x?4)(x?4)令t?(x)?0则(x?2)(x?2)?0?0?x?2令t?(x)?0则(x?2)(x?2)?0?x?2

?t(x)在?0,2?上递增,在?2,???上递减, ?当x?0时,tmin(x)?0;当x?2时,tmax(x)?(2)由(1)t?1. 232x?1?令g(t)?f(x)?tt?a?,t?0,?, ,x?0,24,???4x2?4?2?3?2?t?at?,0?t?a??4则g(t)??

31?t2?at?,a?t???42?a??1??a?g(t)在?0,?和?a,?上递增,在?,a?上递减,

?2??2??2?a3a21aa1a2a1且g()??,g()?1?,g()?g()???,

2442222424

a2a11a2a1令???0则2?1?a?;令???0则0?a?2?1,

4242424?11?a,0?a?2?1??2(x)?? , 2max3a1??,2?1?a???442?f

fmax(x)?1,?目前市中心的综合污染指数没有超标.

21.解:(1)令i(x)?ex?1?x,则i'(x)?ex?1?1,当x?1时,i'(x)?0 当x?1时,i(x)?0,故i(x)在(??,1)上单调递减,在(1,??)上单调递增,

x?1. 所以i(x)?i(1)?0,即e?x(当且仅当x?1时取等号)''令j(x)?x?1?lnx(x?0),则j(x)=

x?1',当0?x?1时,j(x)?0, x当x?1时,j(x)'?0,故j(x)在(0,1)上单调递减,在(1,??)上单调递增,

所以j(x)?j(1)?0,即x?lnx?1(当且仅当x?1时取等号). 当m=1时,

f(x)?ex?1?xlnx(x>0),则f'(x)?ex?1?lnx?1?x?(lnx?1)?(当且仅当 0x?1时取等号)所以,?x?(0,??),f(x)?0;

'x?m?lnx?m有两个变号零点. (2)f(x)有两个极值点,即f(x)?e'①当m?1时,f(x)?e'x?m?lnx?m?ex?1?lnx?1,由⑴知f'(x)?0,

则f(x)在(0,??)上是增函数,无极值点;

'②当m?1时,令g(x)?f(x),则g(x)?e'x?m1?, xg'(1)?e1?m?1?0g'(m)?1?1?0,且g'(x)在(0,??)上单增, m??x0?(1,m) ,使g'(x0)?0.

''当x?(0,x0)时,g(x)?0;当x?(x0,??)时,g(x)?0.

所以,g(x)在(0,x0)上单调递减,在(x0,??)上单调递增.

x?m则g(x)在x?x0处取得极小值,也即最小值g(x0)=e0?lnx0?m.

'由g(x0)?0得m?x0?lnx0,则g(x0)=

1?x0?2lnx0 x0令h(x)=

112?x?2lnx (1?x?m) 则h'(x)??2??1?0, xxxh(x)在(1,m)上单调递减,所以h(x)?h(1)?0.即g(x0)?0,

又x?0时,g(x)???,x???时,g(x)???,故g(x)在(0,??)上有 两个变号零点,从而f(x)有两个极值点.所以,m?1满足题意. 综上所述,f(x)有两个极值点时,m的取值范围是(1,??). 22.解:(1)由已知sin??2x?yx?y,cos??,由sin2??cos2??1,消去?得: 222?x?y??x?y?22普通方程为??????1,化简得x?y?2.

?2??2?(2)由2?sin(π-?)+1=0知?(cos??sin?)?1?0,化为普通方程为x-y+1=0

4222圆心到直线l的距离h=

2,由垂径定理AB?430. 223.解:(1)由f(x)≤3,得|x﹣a|≤3,∴a﹣3≤x≤a+3, 又f(x)≤3的解集为[﹣6, 0].解得:a=-3; (2)∵f(x)+f(x+5)=|x+3|+|x+8|≥5.

又f(x)+f(x+5)≥2m对一切实数x恒成立,∴2m≤5,m≤

5. 2


[数学]湖北省荆州市2018届高三第一次质量检查试卷(理)(2).doc 将本文的Word文档下载到电脑 下载失败或者文档不完整,请联系客服人员解决!

下一篇:画家乡公开课教案

相关阅读
本类排行
× 注册会员免费下载(下载后可以自由复制和排版)

马上注册会员

注:下载文档有可能“只有目录或者内容不全”等情况,请下载之前注意辨别,如果您已付费且无法下载或内容有问题,请联系我们协助你处理。
微信: QQ: