?sin(?2??)??12???2?????6 ②
2?3?①-②得
???2?3或0,???????12
?cos(???)?cos2?3
19.答案:
(1)?2sin??cos??2sin??0 ?4tan??1?tan????14
2222(2)?|a|?|b| ?sin2??cos??4sin?cos??4sin??5(sin??cos?)
?cos???sin?cos? ?cos??0或tan???1 ?0???????2?2或34?
?620.答案: (1)
?f(x)?3sin2x?cos2x?1?2sin(2x??2x?)?1
?2k???2?6?2k??,k??3?23
所以,减区间为[k??(2)因为将f(x)左移?12?62?],k?Z
得到y?2sin(2x??3)?1,
横坐标缩短为原来的
?412,得到g(x)?2sin(4x??34?3?3)?1
?0?x? ??3?4x?? ??????sin?4x???1 23??33,3]
?1?3?2sin(4x??3)?1?3 所以,值域[1?21.答案: (1)?4sin(2x???2?4sin(2x??3)?a, ??6?2x??3?56?
?3)?4 ??2?a?4
(2)图像法:函数y?4sin(2x?由图像可得:a的取值范围为(22.答案:
?3)在(???4,4)上图像为
2,4)
?f(x)的定义域为R?f(x)在R上是奇函数且是增函数
京翰高考网:http://gaokao.zgjhjy.com/
2?f(cos??2m)??f(2msin??2)?f(2?2msin?) 奇函数且增函数
22?cos??2m?2?2msin? ?cos??2?2m(1?sin?)
(1)当sin??1时,?-2?0恒成立?m?R
cos??21?sin?22(2)当1?sin??0时,?2m?2??sin??11?sin?2
设g(?)??sin??11?sin???(1?sin?)?2(1?sin?)?21?sin?21?sin???[(1?sin?)?21?sin?]?2
?1?sin??0?1?sin???22当sin??1?2时取等号
?g(?)??22?2 ?2m?2?22 ?m?1?2
综上有:m的取值范围是(
1?2,+∞)
安博京翰教育网http://www.zgjhjy.com/