银川一中2015届高三第四次模拟考试数学(理科)参考答案
一、选择题 题号 答案 1 D 2 A 3 A 4 C 5 B 6 A 7 B 8 C 9 C 10 D 11 B 12 B 二、填空题: 13. 6
14. (??,1][3,??). 15、0. 16、①②③
17、【解】 (Ⅰ)f(x)?1?cos(?x)??m?2sin(?x?)?1?m.
262?2?3?,解得??. 依题意函数f(x)的最小正周期为3?,即?33sin(?x)?2?所以
f(x)?2sin(2x??)?1?m. 36当x?[0,?]时,?2x?5?12x????,?sin(?)?1,6366236所以f(x)的最小值为m.依题意,m?0. 所以f(x)?2sin(2x??)?1.36????6分(Ⅱ)
f(C)?2sin(?2C?而???,所以??.解得C?.63663622在Rt?ABC中,A?B?2C?2C??)?1?1,?sin(?)?1. 36365?2C????2,2sin2B?cosB?cos(A?C),8分?1?5?2cos2A?sinA?sinA?0,解得sinA?.25?10?sinA?1,?sinA?.12分218、∵EF?平面AEB,AE?平面AEB,BE?平面AEB ∴EF?AE,EF?BE 又AE?EB ∴EB,EF,EA两两垂直
以点E为坐标原点,EB,EF,EA分别为x,y,z轴 建立如图所示的空间直角坐标系
10分由已知得,A(0,0,2),B(2,0,0),C(2,4,0),F(0,3,0),
D(0,2,2),G(2,2,0)∴EG?(2,2,0),BD?(?2,2,2)
∴BD?EG??2?2?2?2?0 ∴BD?EG
网
- 6 -
?2?由已知得EB?(2,0,0)是平面DEF的法向量
设平面DEG的法向量为n?(x,y,z) ∵ED?(0,2,2),EG?(2,2,0)
??ED?n?0?y?z?0??EG?n?0x?y?0??∴,即?,令x?1,得n?(1,?1,1)
设平面DEG与平面DEF所成锐二面角的大小为?
cos??|cos?n,EB?|?则
|nEB|23??3 |n||EB|23∴平面DEG与平面DEF所成锐二面角的余弦值为19、(1)?的可能取值为0,1,2,3
3 331112111111111P(??0)????;P(??1)??????????;
432244324324324321132112131111P(??2)??????????;P(??3)????
432432432244324??的分布列为
E(?)?0?1111123?1??2??3?? 24424412321(2)设 “甲队和乙队得分之和为4”为事件A,“甲队比乙队得分高”为事件B
111111213?2?2?2?1?2?则P(A)??C3??C???C?()? 3?3?????43?3?24?3?34?3?31P(AB)18111211?2?P(BA)??? ?…10’P(AB)??C3???()?1P(A)6418?3?331x2y220、解:?1?因为双曲线方程为2?2?1
abb所以双曲线的渐近线方程为y??x
ab因为两渐近线的夹角为60且?1,所以?POF?30
a所以
网
3b ?tan30?3a- 7 -
所以a?3b
l1 y P A F x l B 因为c?2,所以a2?b2?22 所以a?3,b?1
O l2 x2所以椭圆C的方程为?y2?1
3?2?因为l?l1,所以直线l的方程为y?因为直线l2的方程为y?a(x?c),其中c?a2?b2 bbx, a?a2ab?,? 联立直线与l2的方程解得点P?cc??|FA|设??,则FA??AP |AP|?a2?ab?x0,?y0? 因为点F?c,0?,设点A?x0,y0?,则有?x0?c,y0????cc???abc2??a2解得x0?,y0?
c?1???c?1????c??a????ab??1 xy因为点A?x0,y0?在椭圆2?2?1上,所以22aba2c2?1???b2c2?1???222222即c??a?222???2a4??1???a2c2
222222等式两边同除以a4得(e??)???e(1??),e?(0,1).
e2?e42??2??2?e??3 所以???22?2?e2?e??222??2?2?e???3?3?22?2?1
2?e2|FA|2?2?1e?2?2所以当2?e2?,即时,取得最大值故的最大值为2?1
|AP|2?e22??21.解:(1)f'(x)?f'(1)e2x?2?2x?2f(0),所以f'(1)?f'(1)?2?2f(0),即f(0)?1. 又
f(0)?f?(1)?2?e, 222x所以f'(1)?2e,所以f(x)?e(2)
?x2?2x.
f(x)?e2x?2x?x2,
x111?g(x)?f()?x2?(1?a)x?a?ex?x2?x?x2?(1?a)x?a?ex?a(x?1)2444 ?g?(x)?ex?a.
①当a≤0时,g?(x)?0,函数f?x?在R上单调递增;
网
- 8 -
②当a?0时,由g?(x)?ex?a?0得x?lna,
∴x????,lna?时,g?(x)?0, g(x)单调递减;x??lna,???时,
g?(x)?0,g(x)单调递增.
综上,当a≤0时,函数g(x)的单调递增区间为(??,??);当a?0时, 函数g(x)的单调递增区间为?lna,???,单调递减区间为???,lna?. (3)解:设p(x)?
e?lnx,q(x)?ex?1?a?lnx, xe1??0,?p(x)在x?[1,??)上为减函数,又p(e)?0, 2xx?当1?x?e时,p(x)?0,当x?e时,p(x)?0. p'(x)??11q'(x)?ex?1?,q''(x)?ex?1?2?0,
xx?q'(x)在x?[1,??)上为增函数,又q'(1)?0,
?x?[1,??)时,q'(x)?0,?q(x)在x?[1,??)上为增函数, ?q(x)?q(1)?a?2?0.
①当1?x?e时,|p(x)|?|q(x)|?p(x)?q(x)?设m(x)?e?ex?1?a, xee?ex?1?a,则m'(x)??2?ex?1?0, xx?m(x)在x?[1,??)上为减函数,
?m(x)?m(1)?e?1?a,
ex?1比e?a更靠近lnx. xe|p(x)|?|q(x)|??p(x)?q(x)???2lnx?ex?1?a?2lnx?ex?1?a,②当x?e时,
x2x?12x?1x?1设n(x)?2lnx?e?a,则n'(x)??e,n''(x)??2?e?0,
xx2?n'(x)在x?e时为减函数,?n'(x)?n'(e)??ee?1?0,
ea?2,?m(x)?0,?|p(x)|?|q(x)|,??n(x)在x?e时为减函数,?n(x)?n(e)?2?a?ee?1?0, ?|p(x)|?|q(x)|,?ex?1比e?a更靠近lnx. xex?1综上:在a?2,x?1时,比e?a更靠近lnx.
x
22.解: (1) 连接BD,OD,?CB,CD是圆O的两条切线,?BD?OC, 又AB为直径,
?AD?DB,AD//OC.
(2)由AD//OC,??DAB??COB,?Rt?BAD∽Rt?COB,
网
- 9 -
ADAB?,AD?OC?AB?OB?8. OBOC
23.【命题意图】本小题主要考查极坐标系与参数方程的相关知识,具体涉及到极坐标方程与平面直角坐标方程的互化、平面内直线与曲线的位置关系等内容. 本小题考查考生的方程思想与数形结合思想,对运算求解能力有一定要求.
【试题解析】解:(1)圆C的参数方程为?所以普通方程为(x?3)2?(y?4)2?4.
?x?3?2cos?(?为参数)
?y??4?2sin?
?圆C的极坐标方程:?2?6?cos??8?sin??21?0.
(2)点M(x,y)到直线AB:x?y?2?0的距离为d?
|2cos??2sin??9|2
?ABM的面积S?1??|AB|?d?|2cos??2sin??9|?|22sin(??)?9|24
所以?ABM面积的最大值为9?22
33222(a?b)?(ab?ab)?(a?b)(a?b)24.解:(1)证明:.
因为a,b都是正数,所以a?b?0. 又因为a?b,所以(a?b)2?0.
于是(a?b)(a?b)2?0,即(a3?b3)?(a2b?ab2)?0 所以a3?b3?a2b?ab2;
(2)证明:因为b2?c2?2bc,a2?0,所以a2(b2?c2)?2a2bc. ①
2 ③ 同理b2(a2?c2)?2ab2c. ② c2(a2?b2)?2ab. c①②③相加得2(ab?bc?ca)?2abc?2abc?2abc 从而a2b2?b2c2?c2a2?abc(a?b?c).
222222222a2b2?b2c2?c2a2?abc. 由a,b,c都是正数,得a?b?c?0,因此
a?b?c
网
- 10 -