2018年中考真题
∵AD=DC,∴200+x=x,解得:x=100(﹣1)≈73,答:小明还需沿绿道继续直走73
米才能到达桥头D处.
【点评】本题主要考查了解直角三角形的应用,正确得出AD=DC是解题的关键. 21.(8分)为响应“学雷锋、树新风、做文明中学生”号召,某校开展了志愿者服务活动,活动项目有“戒毒宣传”、“文明交通岗”、“关爱老人”、“义务植树”、“社区服务”等五项,活动期间,随机抽取了部分学生对志愿者服务情况进行调查,结果发现,被调查的每名学生都参与了活动,最少的参与了1项,最多的参与了5项,根据调查结果绘制了如图所示不完整的折线统计图和扇形统计图.
(1)被随机抽取的学生共有多少名?
(2)在扇形统计图中,求活动数为3项的学生所对应的扇形圆心角的度数,并补全折线统计图;
(3)该校共有学生2000人,估计其中参与了4项或5项活动的学生共有多少人? 【分析】(1)利用活动数为2项的学生的数量以及百分比,即可得到被随机抽取的学生数; (2)利用活动数为3项的学生数,即可得到对应的扇形圆心角的度数,利用活动数为5项的学生数,即可补全折线统计图;
(3)利用参与了4项或5项活动的学生所占的百分比,即可得到全校参与了4项或5项活动的学生总数.
【解答】解:(1)被随机抽取的学生共有14÷28%=50(人); (2)活动数为3项的学生所对应的扇形圆心角=
×360°=72°,活动数为5项的学生为:
11
2018年中考真题
50﹣8﹣14﹣10﹣12=6,如图所示:
(3)参与了4项或5项活动的学生共有
×2000=720(人).
【点评】本题主要考查折线统计图与扇形统计图及概率公式,根据折线统计图和扇形统计图得出解题所需的数据是解题的关键.
22.(10分)如图,已知AB为⊙O直径,AC是⊙O的切线,连接BC交⊙O于点F,取中点D,连接AD交BC于点E,过点E作EH⊥AB于H. (1)求证:△HBE∽△ABC;
(2)若CF=4,BF=5,求AC和EH的长.
的
【分析】(1)根据切线的性质即可证明:∠CAB=∠EHB,由此即可解决问题; (2)连接AF.由△CAF∽△CBA,推出CA2=CF?CB=36,推出CA=6,AB=AF=
=2
,由Rt△AEF≌Rt△AEH,推出AF=AH=2
)2,解方程即可解决问题;
=3
,
,设EF=EH=x.在Rt△EHB
中,可得(5﹣x)2=x2+(
【解答】解:(1)∵AC是⊙O的切线,∴CA⊥AB. ∵EH⊥AB,∴∠EHB=∠CAB. ∵∠EBH=∠CBA,∴△HBE∽△ABC. (2)连接AF.
12
2018年中考真题
∵AB是直径,∴∠AFB=90°.
∵∠C=∠C,∠CAB=∠AFC,∴△CAF∽△CBA,∴CA2=CF?CB=36,∴CA=6,AB=∵
=
=3
,AF=
=2
.
,∴∠EAF=∠EAH.
∵EF⊥AF,EH⊥AB,∴EF=EH.
∵AE=AE,∴Rt△AEF≌Rt△AEH,∴AF=AH=2(
)2,∴x=2,∴EH=2.
,设EF=EH=x.在Rt△EHB中,(5﹣x)2=x2+
【点评】本题考查了相似三角形的判定和性质、圆周角定理、切线的性质、角平分线的性质等知识,解题的关键是学会添加常用辅助线,正确寻找相似三角形解决问题.
23.(10分)某游乐园有一个直径为16米的圆形喷水池,喷水池的周边有一圈喷水头,喷出的水柱为抛物线,在距水池中心3米处达到最高,高度为5米,且各方向喷出的水柱恰好在喷水池中心的装饰物处汇合.如图所示,以水平方向为x轴,喷水池中心为原点建立直角坐标系.
(1)求水柱所在抛物线(第一象限部分)的函数表达式;
(2)王师傅在喷水池内维修设备期间,喷水管意外喷水,为了不被淋湿,身高1.8米的王师傅站立时必须在离水池中心多少米以内?
(3)经检修评估,游乐园决定对喷水设施做如下设计改进:在喷出水柱的形状不变的前提下,把水池的直径扩大到32米,各方向喷出的水柱仍在喷水池中心保留的原装饰物(高度不变)处汇合,请探究扩建改造后喷水池水柱的最大高度.
13
2018年中考真题
【分析】(1)根据顶点坐标可设二次函数的顶点式,代入点(8,0),求出a值,此题得解; (2)利用二次函数图象上点的坐标特征,求出当y=1.8时x的值,由此即可得出结论; (3)利用二次函数图象上点的坐标特征可求出抛物线与y轴的交点坐标,由抛物线的形状不变可设改造后水柱所在抛物线(第一象限部分)的函数表达式为y=﹣x2+bx+
,代入
点(16,0)可求出b值,再利用配方法将二次函数表达式变形为顶点式,即可得出结论. 【解答】解:(1)设水柱所在抛物线(第一象限部分)的函数表达式为y=a(x﹣3)2+5(a≠0),将(8,0)代入y=a(x﹣3)2+5,得:25a+5=0,解得:a=﹣,∴水柱所在抛物线(第一象限部分)的函数表达式为y=﹣(x﹣3)2+5(0<x<8).
(2)当y=1.8时,有﹣(x﹣3)2+5=1.8,解得:x1=﹣1,x2=7,∴为了不被淋湿,身高1.8米的王师傅站立时必须在离水池中心7米以内. (3)当x=0时,y=﹣(x﹣3)2+5=
.
.
设改造后水柱所在抛物线(第一象限部分)的函数表达式为y=﹣x2+bx+∵该函数图象过点(16,0),∴0=﹣×162+16b+线(第一象限部分)的函数表达式为y=﹣x2+3x+后喷水池水柱的最大高度为
米.
,解得:b=3,∴改造后水柱所在抛物=﹣(x﹣
)2+
,∴扩建改造
【点评】本题考查了待定系数法求二次函数解析式以及二次函数图象上点的坐标特征,解题的关键是:(1)根据点的坐标,利用待定系数法求出二次函数表达式;(2)利用二次函数图象上点的坐标特征求出当y=1.8时x的值;(3)根据点的坐标,利用待定系数法求出二次函数表达式.
24.(12分)如图,Rt△OAB的直角边OA在x轴上,顶点B的坐标为(6,8),直线CD交AB于点D(6,3),交x轴于点C(12,0). (1)求直线CD的函数表达式;
(2)动点P在x轴上从点(﹣10,0)出发,以每秒1个单位的速度向x轴正方向运动,过点P作直线l垂直于x轴,设运动时间为t.
①点P在运动过程中,是否存在某个位置,使得∠PDA=∠B?若存在,请求出点P的坐标;若不存在,请说明理由;
②请探索当t为何值时,在直线l上存在点M,在直线CD上存在点Q,使得以OB为一边,
14
2018年中考真题
O,B,M,Q为顶点的四边形为菱形,并求出此时t的值.
【分析】(1)利用待定系数法即可解决问题;
(2)①如图1中,作DP∥OB,则∠PDA=∠B.利用平行线分线段成比例定理,计算即可,再根据对称性求出P′;
②分两种情形分别求解即可解决问题:如图2中,当OP=OB=10时,作PQ∥OB交CD于Q.如图3中,当OQ=OB时,设Q(m,﹣ m+6),构建方程求出点Q坐标即可解决问题;
【解答】解:(1)设直线CD的解析式为y=kx+b,则有,解得,∴直线
CD的解析式为y=﹣x+6.
(2)①如图1中,作DP∥OB,则∠PDA=∠B.
∵DP∥OB,∴
=
,∴
=,∴PA=,∴OP=6﹣=
,∴P(
,0),根据对
,0).
称性可知,当AP=AP′时,P′(,0),∴满足条件的点P坐标为(,0)或(
②如图2中,当OP=OB=10时,作PQ∥OB交CD于Q.
15