中考专题复习第15讲辅助线(2)

2019-06-17 17:29

例3.如图所示,现有一张边长为4的正方形纸片ABCD,点P为正方形AD边上的一点(不与点A、点D重合)将正方形纸片折叠,使点B落在P处,点C落在G处,PG交DC于H,折痕为EF,连接BP、BH. (1)求证:∠APB=∠BPH;

(2)当点P在边AD上移动时,△PDH的周长是否发生变化?并证明你的结论;

(3)设AP为x,四边形EFGP的面积为S,求出S与x的函数关系式,试问S是否存在最小值?若存在,求出这个最小值;若不存在,请说明理由.

五、构造相似三角形:通过构造相似三角形,应用相似三角形对应角相等、对应边成比例的性质,达到求证(解)的目的。 典型例题:

例1.如图,矩形ABCD中,AB=2,AD=4,AC的垂直平分线EF交AD于点E、交BC于点F,则EF= ▲ .

例3.如图,△ABC中,AB=AC,D是AB上的一点,且AD=EF⊥AC,BC=6,则四边形DBCF的面积为 ▲ .

例4. (2011山东淄博4分)如图,正方体的棱长为3,点M,N分别在CD,HE上,CM=

HN=2NE,HC与NM的延长线交于点P,则tan∠NPH的值为 ▲ .

2AB,DF∥BC,E为BD的中点.若31DM,2例2.已知一个矩形纸片OACB,将该纸片放置在平面直角坐标系中,点A(11,0),点B(0,6),点P为BC边上的动点(点P不与点B、C重合),经过点O、P折叠该纸片,得点B′和折痕OP.设BP=t.

(Ⅰ)如图①,当∠BOP=30时,求点P的坐标;

(Ⅱ)如图②,经过点P再次折叠纸片,使点C落在直线PB′上,得点C′和折痕PQ,若AQ=m,试用含有t的式子表示m;

(Ⅲ)在(Ⅱ)的条件下,当点C′恰好落在边OA上时,求点P的坐标(直接写出结果即可).

0

六、构造特殊四边形:通过构造平行四边形、矩形、菱形、正方形、梯形等特殊四边形,应用它们边、角、对角线、中位线的性质,达到求证(解)的目的。 典型例题:

例1. 如图,矩形ABCD中,E是AD的中点,将△ABE沿BE折叠后得到△GBE,延长BG交CD于F点,若CF=1,FD=2,则BC的长为【 】 A.32B.26C.25D.23

例2. 如图,点D是△ABC的边AB的延长线上一点,点F是边BC上的一个动点(不与点B重合).以BD、BF为邻边作平行四边形BDEF,又AP如果BD?A. C.

例3.如图,P是矩形ABCD内的任意一点,连接PA、PB、PC、PD,得到△PAB、△PBC、△PCD、△PDA,设它们的面积分别是S1、S2、S3、S4,给出如下结论: ①S1+S2=S3+S4 ② S2+S4= S1+ S3

③若S3=2 S1,则S4=2 S2 ④若S1= S2,则P点在矩形的对角线上 其中正确的结论的序号是 ▲ (把所有正确结论的序号都填在横线上).

例4.如图,在□ABCD中,延长CD到E,使DE=CD,连接BE交AD于点F,交AC于点G。 (1)求证:AF=DF;

(2)若BC=2AB,DE=1,∠ABC=60°,求FG的长。

BE(点P、E在直线AB的同侧),

1那么△PBC的面积与△ABC面积之比为【 】 AB,

413 B. 4513 D. 54例5.如图,在四边形ABCD中,AD∥BC,对角线AC的中点为O,过点O作AC的垂直平分线分别与AD、BC相交于点E、F,连接AF。 求证:AE=AF。

例6.(2012海南省11分)如图(1),在矩形ABCD中,把∠B、∠D分别翻折,使点B、D分

别落在对角

线BC上的点E、F处,折痕分别为CM、AN. (1)求证:△AND≌△CBM.

(2)请连接MF、NE,证明四边形MFNE是平行四边形,四边形MFNE是菱形吗?请说明理由? (3)P、Q是矩形的边CD、AB上的两点,连结PQ、CQ、MN,如图(2)所示,若PQ=CQ,PQ∥MN。

且AB=4,BC=3,求PC的长度.


中考专题复习第15讲辅助线(2).doc 将本文的Word文档下载到电脑 下载失败或者文档不完整,请联系客服人员解决!

下一篇:PowerPoint 2010教案

相关阅读
本类排行
× 注册会员免费下载(下载后可以自由复制和排版)

马上注册会员

注:下载文档有可能“只有目录或者内容不全”等情况,请下载之前注意辨别,如果您已付费且无法下载或内容有问题,请联系我们协助你处理。
微信: QQ: