??522???例1 判断矩阵A?2?60的正定性.????20?4??解
因为A的
一阶顺序主子式为:a11??5?0二阶顺序主子式为:a11a12?5aa?21222三阶顺序主子式为:|A|??80?0所以A为负定矩阵。
2?6?26?06
例2 判断矩阵解
?122???A?250的正定性.????2020??因为矩阵的三个顺序主子式分别为
12212|1|?1?0,?1?0,250?0252020一阶主子式为:1,5,20二阶主子式为:
125012?16?0,?100?0,?1?0,22002025三阶主子式为:|A|?0故A为半正定矩阵。
7
4、梯度
f(x)在x点处的梯度
T?f(x)?g(x)????f(x)?f(x)?f(x)???x,,?,1?x2?xn??常见的公式
?c?0?(bTx)?b?(xTAx)?2Ax其中AT?A?(xTx)?2x8
例1 例2 z?2x1?3x2?6x3z?2x2?3x212?4x1x2?2?z????3????6???z???4x1?4x2??4x1?6x?2?9
5、Hesse矩阵,
?2??f(x)?2f(x)??x21?x?1?x2??2f(x)?2f(x)2f(x)?H(x)????x2?x1?x2?2???????2f(x)?2f(x)???xn?x1?x?n?x2?2c?0?2(bTx)?0?2(xTAx)?2A(其中AT?A)
?2f(x)??x1?xn???2f(x)??x2?xn?????2f(x)???2xn??10
?