这里,I?Iph?Id?Iph?I0(e在短路时,U=0,Iph?Isc; 而在开路时,I=0,Isc?I0(e ? UOC?1?U?1)。
?Uoc?1)?0;
Iln[sc?1] (4) ?I0(4)式即为在Rsh??和Rs?0的情况下,太阳能电池的开路电压UOC和短路电流ISC的关系式。其中UOC为开路电压,ISC为短路电流,而I0、?是常数。 二、实验仪器与材料
1、光具座及滑块座
2、具有引出接线的盒装太阳能电池。
3、数字电压表1只、电阻箱1只;或数字万用表2只。 4、干电池2节(1.5V)或直流电源1个。 5、白光源1,射灯结构。功率40W。 6、遮板及遮光罩各一个。 实验装置如图4所示。
遮光罩光源20cm 图4
三、实验内容
1、在没有光源(全黑)的条件下,测量太阳能电池正向偏压时的I-U特性(直流偏
压从0—3.0V)。 a、画出测量线路图。
b、利用测得的正向偏压时I-U关系数据,画出I-U曲线并求得常数?和I0的值。 2、在不加偏压时,用白色光源照射,测量太阳能电池一些特性。注意此时光源到太阳能电池距离保持为20cm。 a、画出测量线路图。
b、测量电池在不同负载电阻下,I对U变化关系,画出I-U曲线图。 c、求短路电流ISC和开路电压UOC。
太阳能电池盒d、求太阳能电池的最大输出功率及最大输出功率时负载电阻。 e、计算填充因子FF?Pm(Isc?Usc)。
3、测量太阳能电池的光照效应与光电性质。 在暗箱中(用遮光罩挡光),取离白光源20cm水平距离光强作为标准光照强度,用光功率计测量该处的光照强度J0;改变太阳能电池到光源的距离x,用光功率计测量x处的光照强度J,求光强J与位置X关系。测量太阳能电池接收到相对光强度J相应的ISC和UOC的值。 a、描绘ISC和相对光强度J系函数。
b、描绘出UOC和相对光强度JJ0J0J0不同值时,
之间的关系曲线,求ISC和与相对光强JJ0之间近似关
之间的关系曲线,求UOC与相对光强度JJ0之间近
似函数关系。 四、实验结果例 1、在全暗的情况下,测量太阳能电池正向偏压下流过太阳能电池的电流I和太阳能电池
的输出电压U,测量电路如图5所示。正向偏压从0-3.0V条件下,测量结果如表1所示。
1V2+ -太阳能电池R 图5
R=1000Ω
表1 全暗情况下太阳能电池在外加偏压时伏安特性 0.400 1.498 2.034 2.286 2.410 2.488 2.601 0.01 0.39 0.39 1.40 1.40 2.53 2.53 3.46 3.46 4.16 4.16 5.46 5.46 U1/V U2/mv 2.654 6.21 6.21 I/?A 0.01310-3 U1/V U2/mv I/?A II0?U2.727 7.49 7.49 ??2.787 8.79 8.79 2.853 10.41 10.41 2.928 12.76 12.76 由?e?1,当U较大时,e??1,即lnI??U?lnI0由最小二乘法,将表1
中最后6点数据处理得:
??2.60V?1,I0?6.28?10?6mA
相关系数r=0.9998。
2、在不加偏压时,在使用遮光罩条件下,保持白光源到太阳能电池距离20cm,测量太阳能电池的输出I对太阳能电池的输出电压U的关系,如图7所示。由图7得短路电流
ISC=0.650mA,开路电压UOC=3.70V。太阳能电池在光照时,输出功率P=I3U与负载
电阻R的关系,如图8所示。
I/mA0.70.60.50.40.30.20.10U/A0.51.01.52.02.53.03.54.0 图7 光照下太阳能电池输出电流I与输出电压的U关系
2.0P/mW1.51.00.50.001020304050R/k60708090100图8 光照下输出功率P与负载电阻R的关系
由图8可得到最大输出功率Pmax?1.604mW,此时负载电阻R=4800Ω,填充因子FF?PmIscUoc?1.6040.650?3.70?0.667。
3、测量太阳能电池ISC和UOC与相对光强JJ0的关系,测量结果如图9和图10所示。
8ISC/mA7654321000.20.40.60.81.01.2J/J0 图9
5.04.54.03.53.02.52.01.51.00.5000.20.4VOC/VJ/J00.60.81.01.2 的近似函数关系为
)?C (6)
图10
从图9和图10中找出ISC及UOC与相对光强JIsc?A(JJoJ0) (5) Uoc??In(JJJ0J0利用最小二乘法拟合,得ISC=6.814
-0.0905,相关系数r=0.9996;
Uoc?0.5057In(JJ0)?4.413,相关系数r=0.922。从最小二乘法拟合中,可知对短路电流
ISC和开路电压UOC关系式(5)式和(6)式成立。
实验三
一、实验目的
单丝和单缝衍射实验
1、观察单缝、单丝、小孔的夫琅和费衍射现象,了解缝宽、线径、孔径变化引起衍射图
样变化的规律,加深对光的衍射理论的理解。
2、利用衍射图样测量单缝的宽度和单丝的直径。并将实验结果与其他方法测量结果进行
比较。 二、实验仪器
光具座、半导体激光器(波长650nm)及转盘、单缝(三种缝宽)、单丝(三种线径)架、
小孔架(板)、屏、米尺、直尺、读数显微镜,激光器专用电源。 三、实验原理
由夫琅和费衍射,光源发出的平行光垂直照射在单缝(或单丝)上。根据惠更斯—菲涅耳原理,单缝上每一点都可以看成是向各方向发射球面子波的新波源,波在接收屏上叠加形成一组平行于单缝的明暗相间的条纹。为实现平行光的衍射,即要求光源S及接收屏到单缝距离都是无限远或相当无限远,因而实验中借助两个透镜来实现,如图1所示。位于透镜L1的前焦平面上的“单色狭缝光源”S,经透镜L1后变成平行光,垂直照射在单缝D上,通过单缝D衍射在透镜L2的后焦平面上,呈现出单缝的衍射光样,它是一组平行于狭缝的明暗相间的条纹。如图2所示。
sL1DL2θP0Pθ 图1
II03λa2λaλa0图2
λa2λa3λaSinθ