?an?a2a1??2?n?23??3317.解:(1)因为数列是公差为2的等差数列,所以,
则
a2?3a1?18,
a1a2?a1?3a1?18??92a,9,a12又成等比数列,所以, ?an??n?a?3a??9a?3. 11解得或,因为数列?3?为正项数列,所以1an3??2?n?1??2n?1n33所以,
故
an??2n?1??3n.
,
(2)由(1)得所以所以
Sn?1?3?3?32?L??2n?1??3n,
3Sn?1?32?3?33?L??2n?1??3n?123nn?1?Sn?3Sn?3?2??3?3?L?3?2n?1?3????,
32?3n?3?2Sn?3?2???2n?1??3n?1?3n?1?6?1?2n?3n?1?2?2n?3n?1?6????1?3即,
故
Sn??n?1??3n?1?3.
3?3?127P??????4?4256. 18.解:(1)由题意可知:
(2)X的所有可能值为0,1,2,3,4.
则
P?Ak??3?k?1,2,3,4?A,A,A,A4,且1234相互独立.
故
P?X?0??PA1???14,
313P?X?1??PA1?A2???4416,
??·6·