(二)数据整合
1.传统人力资源数据和人力资源大数据的整合
过去人力分析主要依赖企业人力资源信息系统中结构化的数据,主要包括现任雇员和未被雇佣的求职者的职业履历、技能特长、正式教育经历以及人口统计信息,对于现任雇员来说还有工龄、历史薪酬和绩效、培训记录等信息(Angraveetal.,2016)。这些数据的优势是与人力资源相关性强,准确、完整,数据质量高;但局限性在于数据搜集成本高,数据延迟时间长,缺乏连续性的数据,反映的内容有限。这些传统数据库中的数据恰好可以与人力资源大数据形成优势互补。因此,在大数据条件下,需要将这些传统的结构化数据和多种不同来源、结构化程度不同的人力资源大数据进行整合,并将数据结构化,最终得到可以进行分析的数据集(Angraveetal.,2016)。
2.人力资源数据与其他业务部门的数据整合
人力分析要真正创造价值,必须“跳出”人力资源部门进行人力分析。例如,通过跨部门的数据共享,将人力资源大数据与组织的业务部门数据、运营数据、财务数据等进行整合并予以综合性的商业分析(Fairhurst,2014),将人力资源投资与公司经营成果之间,以及人力资源管理与公司的战略目标之间建立起清晰的关联性。
(三)数据分析
1.数据分析方法
在数据分析的方法上,呈现出如下三个方面的变革。首先,数据分析的自动化程度提高,分析方法的通用性增强。随着人工智能和机器学习在大数据分析中的应用,不需要改变程序就能够分析不同类型、不同结构的数据,有些系统甚至能够自动做出反馈。其次,数据分析的实时性要求提高,大多数情况下要求立即得出结论。最后,人力资源管理的理论不再是人力分析的必要前提,相关分析方法逐渐占主导地位(Kitchin,2014)。
2.数据分析目标
在数据分析的目标上,预测成为人力分析的核心目标(Heuvel&Bondarouk,2016)。精准的预测能力是人力分析能够支撑人力资源决策并创造商业价值的关键,例如通过预测候选人的工作潜能和忠诚度来优化招聘决策能够提高员工的生产率并降低离职率。
在过去的人力分析中,对于不能直接进行观察的能力和动机等因素,主要在人才测评理论的指导下,依赖人力资源经理的直觉和经验进行判断。得益于大数据技术对于人才生理活动、行为以及人际关系角度的全面观察,大数据条件下人力分析的另一项重要目标就是通过可以观察的外在表现和行为推断不能观察的能力、动机、情绪和心理状态,以及产生绩效的原因等内在因素(Davenportetal.,2010)*。
(四)数据分析结果的呈现
如果止于分析本身,则是不能创造价值的。对人力分析而言,只有当分析得到的商业洞察被决策者采用时,才有可能创造价值。这类似于一种内部销售的过程。要达到使分析结果变得容易理解和转化为行动的目的,最核心的变革在于将数据的洞见与决策者关心的商业问题相结合,强调分析结果呈现的时效性和针对性,通过规范分析提供切实可行的建议,并且用后续数据不断证明人力分析所创造的商业价值(Boudreau&Cascio,2017)。
(五)人力分析的组织和流程的变革
1.人力分析组织架构的变革
从事人力分析的人才方面,需要数据科学家、人力资源专家、部门经理和公司高层参与协作(Fairhurst,2014)。例如,谷歌公司的人力运营部门(PeopleOperationDepartment)的人员构成即是人力资源经理、业务咨询顾问、数据科学家各占三分之一。
2.人力分析流程的变革
传统人力分析的流程是从问题出发,有针对性地搜集数据并完成数据分析工作。而基于人力资源大数据的分析,则既可以从问题出发,也可以从数据出发。
基于大数据技术的人力分析流程的另一项变革是通过算法和模型的迭代进化形成数据分析的闭环。从人力资源大数据到商业洞察再到管理决策和行动,人力分析的过程并没有告一段落,而是依据行动的反馈来检验人力分析的有效性,并且进一步改进、优化或者放弃现有的数据分析模式,使得人力分析本身在应用中不断迭代进化(LaValleetal.,2011)*。
四、人力资源工作流程和工作方式的变革
(一)人力资源职能的变革
1.人力资源规划
基于大数据技术的人力资源规划以满足实现公司战略目标对人力资源的需求为目标,基于人力资源大数据、公司运营和财务大数据、产业和市场大数据以及宏观经济大数据,采用机器学习等现代预测技术来预测人才供给和需求。预测的内容更加广泛、精确和细致,不仅包括人才的数量,还包括人才的具体类别和所需要的素质。预测的范围可以拓展到5~8年,使得中长期人力资源规划成为可能。例如,在过去的几十年里,陶氏化学公司根据公司4万名员工的历史数据以及产业和资金大数据,预测出整个化工行业以七年为一波动周期的劳动力需求情况,据此测算企业的员工晋升率、内部职位调动和其他人力供应等情况,并设计了一个模型工具——陶氏战略性人员配置模拟,用以测算5年后的人员需求以及剩余员工的数量(Isson&Harriott,2016)*。
2.招聘
人力资源大数据将会改变招聘的运作方式。从人才搜寻的角度,从过去基于公开招聘信息的被动搜寻转向基于大数据的人才定位的主动搜寻。在数字化时代,人才必定会在网络中留下“数字足迹”,这些线索为企业主动定位相关人才提供了依据。例如,人才在社交网络上发布的简历信息、与已知人才之间的互动行为、在搜索引擎中的搜索记录、移动智能终端记录的位置信息,以及在包括GitHub等专业网站上的活动记录等等。人力资源大数据为企业提供了全新的人才搜寻渠道。例如,巨兽公司旗下的TalentBin从诸如GitHub、StackOverflow、推特、领英、谷歌以及其他利基网站和社交媒体平台上汇总候选人的资料,然后为每个人创建唯一的标识档案,包括数字足迹、微型工作产品以及可公开获取的联系方式和简介信息(Isson&Harriott,2016)③。这对于难以填补的科学、技术、工程和数学领域里的职位空缺非常有用。