图论及其应用徐俊明课后习题提示(13)

2020-12-16 09:27

Alsosince|Ei|≤vforeachi=1,2,···, ,bythecondition(b),wehavecandeduceacontradictionasfollows.

v

2<ε=

i=1|Ei|≤ v 2.

v

2(c)SinceGhasoddorderandisregular,wehaveε= > 2.By(b),G

belongstoclasstwo.

(d)IfGisoddorder,theassertionholdsby(b).WenowassumeGisevenorder.Letxbeacut-vertexofG.ThentherearetwosubgraphsHandKsuchthatG=H∪KandV(H)∩V(K)={x}.Withoutlossofgenerality,supposethatHhasoddorderh.Then1≤dH(x)≤ (G),andso

1h1.ε(H)=((h 1) +dH(x))>(h 1) = 222

By(b),Hbelongstoclasstwo,andsodoesG. Ex6.2.5Bycontradiction.Supposethatχ(G)=k>2 .Byremovingsu -cientlymanyedgesfromG(ifnecessary),wemayassumethatχ (G e)=k 1,foreachedgeeofG.ItfollowsfromTheorem6.3thatk≤ (G)+µ(G),andsotheremustexistverticesxandywhicharejoinedbyatleastk edges.

WenowcoloralloftheedgesofGexceptoneoftheedgesjoiningxandy;sinceχ (G e)=k 1,thiscoloringcanbedonewithk 1colors.Nowthenumberofcolorsmissingfromxory(orboth)cannotexceed(k 1) (µ 1),whichinturncannotexceed ,sincek≤ +µ.Butthenumberofcolorsmissingfromxisatleast(k 1) ( 1)=k ,andsimilarlythenumberofcolorsmissingfromyisatleastk .Itfollowsthatthenumberof missingfrombothxandyisatleast 3colors(2k ) ,whichispositivesincek> .Byassigningoneofthesemissingcolorstotheun-colorededgejoiningxandy,wehavecoloredalloftheedgesofGusingonlyk 1colors.therebycontradictingthefactthatχ (G)=k. v 3

Ex6.2.6LetLbethelineofasimplegraphG.ByExercise6.2.3,χ (G)=χ(L).Since (G)≥3,Lisnetheranoddcyclenoracompletegraph,and (L)≤2 (G) 2.Thus,ByBrooks’theorem,χ (G)=χ(L)≤ (L)≤2 (G) 2.

13


图论及其应用徐俊明课后习题提示(13).doc 将本文的Word文档下载到电脑 下载失败或者文档不完整,请联系客服人员解决!

下一篇:2015-2020年中国膨胀石墨填料行业发展前景预测与投资战略规划分

相关阅读
本类排行
× 注册会员免费下载(下载后可以自由复制和排版)

马上注册会员

注:下载文档有可能“只有目录或者内容不全”等情况,请下载之前注意辨别,如果您已付费且无法下载或内容有问题,请联系我们协助你处理。
微信: QQ: