图论及其应用徐俊明课后习题提示(6)

2020-12-16 09:27

HintstoExercisesinChapter3

Ex3.1.4Usingthefollowingthreeequalities:

3v ε=6,

v=v3+v4+v5+v6+v7+v8+···+v ,

2ε=3v3+4v4+5v5+6v6+7v7+8v8+···+ v .

Ex3.1.6Usingthefollowingthreeequalities:

3v=φ1+2φ2+3φ3+4φ4+5φ5+6φ6+7φ7+8φ8+···,

2ε=φ1+2φ2+3φ3+4φ4+5φ5+6φ6+7φ7+8φ8+···,

φ=φ1+φ2+φ3+φ4+φ5+φ6+φ7+φ8+···,

andEuler’sformulav ε+φ=2.

Ex3.1.7Withoutlossofgenerality,assumethatGisaplanegraph.ByTheorem

3.2andEuler’sformula, 2ε(G)=dG(f)≥gφ=g(2 v+ε)= g(v 2)+gε.

f∈F(G)

1v(v 1),wehaveEx3.1.8Fromε≤3v 6andε(G)+ε(Gc)=11ε(Gc)≥v(v 1) 3(v 3)=(v2 7v+12)>3v 6forv≥11.22

Ex3.1.14Withoutlossofgenerality,supposethatGismaximalandthat{d1,d2,···,dv}isthedegree-sequenceofG.Then

v

i=1di=2ε=6n 12.

v

i=1Letf(d1,d2,···,dv)=

(a)For3≤di≤v 1andv≥4,d2i.

f(d1,d2,···,dv)≤f(3,3,4,4,···,4,v 1,v 1)

=18+16(v 4)+2(v 1)2=2(v+3)2 62.

(b)Notethatδ≥4impliesv>5.For4≤di≤v 1andv>5,

f(d1,d2,···,dv)≤f(4,4,···,4,v 2,v 2)=16(v 2)+2(v 2)2

=2(v+3)2 4v 42<2(v+3)2 62.

Ex3.2.3LetV(G)={x,y,z,x4,x5,···,xv}.ByKuratowski’stheorem,GcontainsnoK3,3.Thereexistsatmosttwoxi,whichallareadjacenttox,y,z.Thenumberofedgesbetween{x,y,z}andV\{x,y,z}isatmost2·3+(n 5)·2=2n 4.ItfollowsthatdG(x)+dG(y)+dG(z)≤6+(2n 4)=2n+2.

6


图论及其应用徐俊明课后习题提示(6).doc 将本文的Word文档下载到电脑 下载失败或者文档不完整,请联系客服人员解决!

下一篇:2015-2020年中国膨胀石墨填料行业发展前景预测与投资战略规划分

相关阅读
本类排行
× 注册会员免费下载(下载后可以自由复制和排版)

马上注册会员

注:下载文档有可能“只有目录或者内容不全”等情况,请下载之前注意辨别,如果您已付费且无法下载或内容有问题,请联系我们协助你处理。
微信: QQ: