hasrankv 2.SinceA issemi-positive,P1 A22ispositiveandQ=P2 A11
1A12P 1A21issemi-positive.Thus,Q+Id1isinvertible.Ontheotherhand,let
diag(d2,···,dd1+1)Id1 A11 A12S=, A21diag(dd1+2,···,dv)Iv d1 1 A22
theth-(v 1)sub-matrixofA v,itsdeterminantdetS=detP1·det(Q+Id1)=0,and A v·Jv,1=Ov,1,thatis,rank(A)=v 1.
Case2d1=v 1.Inthiscase,
0J1,v 1A=,Jv 1,1Av 1
whereAv 1istheadjacencymatrixofG x1.diag(d2 1,···,dv 1) Av 1issemi-positiveanddiag(d2,···,dv) Av 1istheth-(v 1)sub-matrixofA ,whichisinvertible.SinceA ·Jv 1=Ov,1,rank(A )=v 1.
( =)Assumerank(A )=v 1andGisdisconnected.LetG1,G2,···,GωbeconnectedcomponentsofGwithordersv1,v2,···,vω,respectively.Then
A =diag(A v1,Av2,···,Avω),
whereA viistheLaplacematrixofGi(i=1,2,···,ω).SinceGiisconnected,thus,
rank(A vi)=vi 1,
Itfollowsthat
v 1=ω
i=1i=1,2,···,ω.(vi 1)=v ω,
fromwhich,ω=1,thatis,Gisconnected.
4