变式:求sin2 1°+sin2 2°+sin2 3°+...+sin2 88°+sin2 89°的值。
12n2例2. (裂项求和法)在数列{an}中,an=+bn={bn}的前nn+1n+1n+1anan+1
项和。
1111变式:求数列...的前n项和Sn. 11+21+2+3+41+2+3+...+n
222an= = - n(n+1)nn+1
22222222Sn=(--) 122334nn+1
= 2-
1111例2(分组求和法)求数列 , 3) , ...的n项和Sn。 2482n
变式:已知数列{an}中,an=(3n-1)+2n,求它的前n项和Sn.
2 22n = n+1n+1