方程10.2-3和10.2-4称为雷诺平均N-S方程。它和瞬态雷诺方程又相同的形式,速度和其它的变量表示成为了其时均形式。由于湍流造成的附加的条件现在表现出来了。这些雷诺压力,必须被模拟出来以便使方程10.2-4封闭。
对于变密度的流体,方程10.2-3和10.2-4认为是Favre平均N-S方程,速度表示为了平均值。这样,方程10.2-3和10.2-4可以应用于变密度的流体。 10.2.3 Boussinesq逼近VS 雷诺压力转化模型 对于湍流模型,雷诺平均逼近要求在方程10.2-4的雷诺压力可以被精确的模拟。一般的方法利用Boussinesq假设把雷诺压力和平均速度梯度联系起来:
Boussinesq假设使用在Spalart-Allmaras模型、k-e模型和k-ω模型中。这种逼近方法好处是对计算机的要求不高。在Spalart-Allmaras模型中只有一个额外的方程要解。k-e模型和k-ω模型中又两个方程要解。Boussinesq假设的不足之处是假设ut是个等方性标量,这是不严格的。 可选的逼近,在RSM中,是用来解决在方程中的雷诺压力张量。另外要加一个方程。这就意味着在二维流场中要加五个方程,而在三维方程中要加七个方程。 在很多情况下基于Boussinesq假设的模型很好用,而且计算量并不是很大。但是RSM模型对于对层流有主要影响的各向异性湍流的状况十分适用。 10.2.4 The Spalart-Allmaras 模型 对于解决动力漩涡粘性,Spalart-Allmaras 模型是相对简单的方程。它包含了一组新的方程,在这些方程里不必要去计算和剪应力层厚度相关的长度尺度。Spalart-Allmaras 模型是设计用于航空领域的,主要是墙壁束缚流动,而且已经显示出和好的效果。在透平机械中的应用也愈加广泛。 在原始形式中Spalart-Allmaras 模型对于低雷诺数模型是十分有效的,要求边界层中粘性影响的区域被适当的解决。在FLUENT中,Spalart-Allmaras 模型用在网格划分的不是很好时。这将是最好的选择,当精确的计算在湍流中并不是十分需要时。再有,在模型中近壁的变量梯度比在k-e模型和k-ω
模型中的要小的多。这也许可以使模型对于数值的误差变