高中数学排列组合相关公式(3)

2021-02-21 09:43

解:可先将甲乙两元素捆绑成整体并看成一个复合元素,同时丙丁也

看成一个复合元素,再与其它元素进行排列,同时对相邻元素内部进行自排。由分步计数原理可得共有522522480A A A 种不同的排法

练习题:某人射击8枪,命中4枪,4枪命中恰好有

3枪连在一起的情形的不同种数为

20

三.不相邻问题插空策略

例3.一个晚会的节目有4个舞蹈,2个相声,3个独唱,舞蹈节目不能

连续出场,则节目的出场顺序有多少种?

解:分两步进行第一步排2个相声和3个独唱共有5

5A 种,第二步将4

舞蹈插入第一步排好的6个元素中间包含首尾两个空位共有种46

A 不同的方法,由分步计数原理,节目的不同顺序共有5

456A A 种

练习题:某班新年联欢会原定的5个节目已排成节目单,开演前又增加了两个新节目.如果将这两个新节目插入原节目单中,且两个新节目不相邻,那么不同插法的种数为 30

四.定序问题倍缩空位插入策略

例4.7人排队,其中甲乙丙3人顺序一定共有多少不同的排法

解:(倍缩法)对于某几个元素顺序一定的排列问题,可先把这几个元

素与其他元素一起进行排列,然后用总排列数除以这几

个元素之间的全排列数,则共有不同排法种数是:7

373/A A

(空位法)设想有7把椅子让除甲乙丙以外的四人就坐共有47A 种方

法,其余的三个位置甲乙丙共有 1种坐法,则共有47A 种

方法。

思考:可以先让甲乙丙就坐吗?

(插入法)先排甲乙丙三个人,共有1种排法,再把其余4四人依次插入共有 方法


高中数学排列组合相关公式(3).doc 将本文的Word文档下载到电脑 下载失败或者文档不完整,请联系客服人员解决!

下一篇:统计第八章习题

相关阅读
本类排行
× 注册会员免费下载(下载后可以自由复制和排版)

马上注册会员

注:下载文档有可能“只有目录或者内容不全”等情况,请下载之前注意辨别,如果您已付费且无法下载或内容有问题,请联系我们协助你处理。
微信: QQ: