基于BP神经网络的函数拟合算法研究(4)

2021-02-21 10:50

1.1 研究意义

函数拟合在数值计算中有着十分广泛的应用。如何近似地表示函数,是函数拟合涉及的基本问题。在进行数学的理论知识研究和实际的应用过程中,经常遇到如下问题:在已知数据中寻找一个函数,使它在一定意义下成为已知数据的近似表示,并求出近似表示所产生的误差,这即是函数的拟合问题。在函数拟合中,可以选择多种函数类用来拟合已知数据。而对的近似程度即误差,也可以有多种计算方法。

对于经典的函数拟合原理,理论分析严密,体系十分成熟。但由此衍生的许多算法都有一些共同的缺点:计算量较大,适应性较差,对模型和数据的要求较高,依赖性强,而神经网络应用于函数拟合的优越性可在许多情况下体现出来,如:第一,它提供了一个标准的拟合结构以及随着隐含层神经元个数改变而能达到任意精度的拟合工具;第二,有标准的学习算法用以确定拟合函数的参数,并且这一过程是拟人的,即,很好地模拟了人的学习过程;第三,能处理的数据对象十分广泛:适用于大规模的,高度非线性的,不完备的数据处理。

利用神经网络进行函数拟合一般是从样本出发,对未知函数进行非线性拟合。神经网络可以计算复杂的输入和输出结果之间的关系,因此非线性函数的拟合可以由神经网络来实现。运用神经网络进行函数拟合在应用数学方面有十分重要的意义,更重要的是,其在工程学和物理学领域也有着十分重要的作用,这是因为此种拟合方式已经广泛地应用在信号处理、系统辨识及建模,以及模式识别等多个方面。因此,本文将采用神经网络进行函数拟合研究[1],并充分分析拟合的效率以及存在的问题。

1.2研究现状


基于BP神经网络的函数拟合算法研究(4).doc 将本文的Word文档下载到电脑 下载失败或者文档不完整,请联系客服人员解决!

下一篇:中华人民共和国标准化法(最新版)

相关阅读
本类排行
× 注册会员免费下载(下载后可以自由复制和排版)

马上注册会员

注:下载文档有可能“只有目录或者内容不全”等情况,请下载之前注意辨别,如果您已付费且无法下载或内容有问题,请联系我们协助你处理。
微信: QQ: