高中数学《集合和函数概念》教学设计 新人教版必修1(9)

2021-04-06 07:42

集合和函数概念》教学

数的奇偶性与单调性之间的关系,体会知识的纵向联系.体会转化与化归的思想、特殊与一般的数学思想,让学生体会到问题后面隐含的本质.

例3:已知

是偶函数,而且在

上是减函数,判断

上是增函数还

是减函数,并证明你的判断.

变式1:函数为奇函数

变式2:你能分析奇函数(偶函数)在对称区间上的单调性的关系吗?试从数形两个方面来分析.

学生分析考察点、解题思路,如果不完善,其他学生补充.

学生回答问题要点预设如下:

1.考察点为函数的奇偶性与单调性的关系.

2.函数的单调性的定义.

3.数形结合、转化与化归的思想.

法一:通过函数的图象分析.

法二:把要研究的范围转化为已知的范围.

设计意图:明确函数的性质是一个有机的整体,不是一个个知识点的简单罗列.同时体会知识的纵向联系与横向联系,在第二个方法中进一步感受转化与的思想.通过两个变式的研究过程,学生体会研究探索性问题的一般思路,即通过特殊情况分析结果,再对结果的正确性进行证明.


高中数学《集合和函数概念》教学设计 新人教版必修1(9).doc 将本文的Word文档下载到电脑 下载失败或者文档不完整,请联系客服人员解决!

下一篇:电子计算机与多媒体课堂教案

相关阅读
本类排行
× 注册会员免费下载(下载后可以自由复制和排版)

马上注册会员

注:下载文档有可能“只有目录或者内容不全”等情况,请下载之前注意辨别,如果您已付费且无法下载或内容有问题,请联系我们协助你处理。
微信: QQ: