Shift Equivalence of P-finite Sequences(12)

2021-04-06 07:48

We present an algorithm which decides the shift equivalence problem for Pfinite sequences. A sequence is called P-finite if it satisfies a homogeneous linear recurrence equation with polynomial coefficients. Two sequences are called shift equivalent if shi

De nition4ForA=a0(n)+a1(n)E+···+ar(n)Er∈k(n)[E]ands∈k,wede ne

A(s)=a0(n+s)+a1(n+s)E+···+ar(n+s)Er.

Withthisde nition,wecanformulatethefollowinggeneralizationofLemma1.Lemma3Letf1,f2:→kbeannihilatedbyL1,L2∈k(n)[E],respectively.

1.Foralls∈andallL∈k(n)[E],wehaveL·f1=0ifandonlyifL(s)·(Es·f1)=0.

2.Ifthereexistssomes∈(s)gcrd(L1,L2).

Proof.

1.Lets∈withf1=Es·f2,thenL·f1=L·f2=0forL:=andL=l0(n)+l1(n)E+···+lr(n)Er∈k(n)[E].Then

L·f1=0 n∈

n∈

n∈:l0(n)f1(n)+···+lr(n)f1(n+r)=0:l0(n+s)f1(n+s)+···+lr(n+s)f1(n+s+r)=0

:l0(n+s)(Es·f1)(n)+···+lr(n+s)(Es·f1)(n+r)=0

L(s)·(Es·f1)=0.

2.Lets∈suchthatf1=Esf2.Then,bypart1,L2·f1=0.Byassumption,

(s)L1·f1=0,hence(SL1+TL2)·f1=0foranyS,T∈k(n)[E].Asitispossible

(s)tochooseS,T∈k(n)[E]suchthatSL1+TL2=L,itfollowsthatL·f1=0.For

thesamereason,L·f2=0. (s)

4.1ThedegenerateCase

LetL1,L2∈k(n)[E]begiven.Wemayextendtheground eldkbyanewtranscen-dentalelements,commutingwithE,andconsiderL1,L2aselementsofk(s)(n)[E],

(s)withcoe cientsfreeofs.InthissettingwecanformL2forsymbolicsandconsider(s)L:=gcrd(L1,L2).Itturnsoutthatthecoe cientsofLneithercontainsnorn:

Lemma4LetL1,L2∈k(n)[E].

1.deg(gcrd(L1,L2))>0forin nitelymanys∈ifandonlyifdeg(gcrd(L1,L2))>

(s)0whereL1,L2areviewedaselementsofk(s)(n)[E].(s)(s)

2.IfL1,L2tok[E].

Proof.(s)areviewedaselementsofk(s)(n)[E],thenL:=gcrd(L1,L2)belongs(s)

theelectronicjournalofcombinatorics13(2006),#R0012


Shift Equivalence of P-finite Sequences(12).doc 将本文的Word文档下载到电脑 下载失败或者文档不完整,请联系客服人员解决!

下一篇:四川燃面怎么做呢

相关阅读
本类排行
× 注册会员免费下载(下载后可以自由复制和排版)

马上注册会员

注:下载文档有可能“只有目录或者内容不全”等情况,请下载之前注意辨别,如果您已付费且无法下载或内容有问题,请联系我们协助你处理。
微信: QQ: