Shift Equivalence of P-finite Sequences(7)

2021-04-06 07:48

We present an algorithm which decides the shift equivalence problem for Pfinite sequences. A sequence is called P-finite if it satisfies a homogeneous linear recurrence equation with polynomial coefficients. Two sequences are called shift equivalent if shi

wethenhavethematrixidentities

F1(n)=CnF1(0)andF2(n)=CnF2(0)

foralln∈.

Lemma2Inthenotationabove,wehavef1=Esf2ifandonlyif

F1(0)=CsF2(0),

foranys∈.(1)

Proof.Lets∈.Then

f1=Esf2 n∈:F1(n)=F2(n+s) n∈

F1(0)=CsF2(0),:CnF1(0)=Cn+sF2(0)

asclaimed.

Thusinordertosolvetheshiftequivalenceproblemforf1,f2,itremainstosolvethematrixequation(1).

3.2SolutionoftheMatrixEquation

LetC∈kr×rbeinvertible,andu,v∈kr.Weseekalls∈satisfyingthematrixequation¯r×rbeinvertiblesuchu=Csv.ConsidertheJordandecompositionofC,i.e.,letT,J∈k

thatC=T 1JTandJisoftheform

0···0αi1J10···0. .......... 0..... 0 .. J2.... (i=1,...,m), ....withJ=J= ....i.0 .... ... ..0 .... ...1 .0···0Jm0······0αi

whereeachαiisaneigenvalueofC.OwingtothecancellationofT 1withT,wehaveCs=T 1JsT,andsowearedoneifwe ndalls∈suchthatu¯=Jsv¯,whereu¯:=Tuandv¯:=Tv.

Since sJ10···0 s.... .J2. 0 (s∈),Js= . ...... ..0 sJm0···0

wecansolvetheproblemforeachJordanblockseparately.Theintersectionoftheindi-vidualsolutionsetsgivesthesetofallsolutions:

theelectronicjournalofcombinatorics13(2006),#R007


Shift Equivalence of P-finite Sequences(7).doc 将本文的Word文档下载到电脑 下载失败或者文档不完整,请联系客服人员解决!

下一篇:四川燃面怎么做呢

相关阅读
本类排行
× 注册会员免费下载(下载后可以自由复制和排版)

马上注册会员

注:下载文档有可能“只有目录或者内容不全”等情况,请下载之前注意辨别,如果您已付费且无法下载或内容有问题,请联系我们协助你处理。
微信: QQ: