Shift Equivalence of P-finite Sequences(2)

2021-04-06 07:48

We present an algorithm which decides the shift equivalence problem for Pfinite sequences. A sequence is called P-finite if it satisfies a homogeneous linear recurrence equation with polynomial coefficients. Two sequences are called shift equivalent if shi

resultbyrestrictingthefi(n)tosuchsequencesandassuminginadditionthatthesum-mandinvolvesthesesequencesonlypolynomially.Forthissituation,theyhaveobtainedacompletesummationalgorithm.

Thesolutiontotheshiftequivalenceproblemisasteptowardsallowingnontrivialdenominatorsinthesummandexpression.Theproblemis,fortwogivensequencestodecidewhetheroneofthemcanbematchedtotheotherbyshiftingitanappropriatenumberoftimes.Formally,givenf,g:→k,wewanttodeterminealls∈suchthat,forallpossiblen,f(n)=g(n+s).

Severalsummationalgorithmsincludeasubroutinefordecidingthisproblemforsomeclassesofsequences.Gosper’salgorithm[12,21]forinde nitehypergeometricsummationrequiressolvingtheshiftequivalenceproblemforunivariatepolynomials,i.e.,givenp,q∈

[n],todetermines∈withp(n)=q(n+s).Alsothecomputationofagreatestfactorialfactorisation(GFF)requiressolvingshiftequivalenceproblems[21,9,10].Theproblemcanbesolvedforpolynomialsbyobservingthatallpossiblesolutionssmustbeamongtheintegerrootsofthepolynomialresn(p(n),q(n+s))∈[s],soinordertosolvetheproblemitsu cestocheckallthoseroots.Alternativealgorithmsareavailable,wereferto[2,19,22]forfurtherinformationaboutthiscase.

Karr’salgorithm[14,15]forsimplifyingnestedsumandproductexpressionsalsoin-cludesanalgorithmfordecidingshiftequivalence.InKarr’salgorithm,sequencesarerepresentedaselementsofcertaintypesofdi erence elds(k,E)[7].Theshiftequiva-lencealgorithmis,roughlystated,basedon ndingtheorbitsinthemultiplicativegroup{E(f)/f:f∈k\{0}}.See[3,24]fordetails.

Inthepresentpaper,wepresentasolutiontotheshiftequivalenceproblemforse-quencesf,g:→kwhicharede nedbyhomogeneouslinearrecurrenceequationswithpolynomialcoe cients(P- nitesequences).Thisissu cientlygeneralforsolvingtheshiftequivalenceproblemsarisinginsummation.There,wearegivenmultivariatepoly-nomialsp1,p2andatupleofP- nitesequencesf1,...,frandwehavetosolvetheshiftequivalenceproblemforf(n):=p1(f1(n),...,fr(n))andg(n):=p2(f1(n),...,fr(n)).AsthesetofP- nitesequencesisclosedunderadditionandmultiplication[25],alsofandgareP- niteandrecurrenceequationsforthemcanbeobtainedalgorithmicallyfromp1,p2andrecurrenceequationsforf1,...,fr[23,18].

2P- niteandC- niteSequences

Inalltheoreticalstatementsmadeinthispaper,itisassumedthatkisanarbitrary eldofcharacteristic0.Forthealgorithms,however,itisnecessarytochoosethe eldksuchthatcertainproblemscanbesolvedink.TheseareexplainedattheendofSection3.2below.

De nition1[26]Letf:→kbeasequence.

1.fiscalledP- niteifthereexistpolynomialsa0,...,ar∈k[n]suchthat

a0(n)f(n)+a1(n)f(n+1)+···+ar(n)f(n+r)=0

theelectronicjournalofcombinatorics13(2006),#R00(n∈).2


Shift Equivalence of P-finite Sequences(2).doc 将本文的Word文档下载到电脑 下载失败或者文档不完整,请联系客服人员解决!

下一篇:四川燃面怎么做呢

相关阅读
本类排行
× 注册会员免费下载(下载后可以自由复制和排版)

马上注册会员

注:下载文档有可能“只有目录或者内容不全”等情况,请下载之前注意辨别,如果您已付费且无法下载或内容有问题,请联系我们协助你处理。
微信: QQ: