中学学科网学科精品系列资料 WWW.ZXXK.COM 上中学学科网,下精品学科资料
?CC1?平面ABC,
A1 ?CD为C1D在平面ABC内的射影. ?△ABC中,AC?BC,D为AB中点,
?AB?CD, ?AB?C1D. ?A1B1∥AB,
M C1
B1 C
D
G F A E
B ··················································································································· 4分 ?A1B1?C1D. ·
(II)解法一:过点A作CE的平行线,
交ED的延长线于F,连结MF. ?D,E分别为AB,BC的中点, ?DE⊥AC.
又?AF∥CE,CE⊥AC. ?AF⊥DE.
?MA⊥平面ABC,
?AF为MF在平面ABC内的射影. ?MF⊥DE.
??MFA为二面角M?DE?A的平面角,?MFA?30?.
在Rt△MAF中,AF?1aBC?,?MFA?30?, 22?AM?3a. 6作AG⊥MF,垂足为G, ?MF⊥DE,AF⊥DE, ?DE⊥平面DMF,
?平面MDE⊥平面AMF, ?AG⊥平面MDE.
a, 2aa?AG?,即A到平面MDE的距离为.
44?CA∥DE,
?CA∥平面MDE,
?在Rt△GAF中,?GFA?30,AF?a?C到平面MDE的距离与A到平面MDE的距离相等,为.
4解法二:过点A作CE的平行线,交ED的延长线于F,连接MF. ?D,E分别为AB,BC的中点, ?DE∥AC.
中学学科网学科精品系列资料 WWW.ZXXK.COM 版权所有@中学学科网
中学学科网学科精品系列资料 WWW.ZXXK.COM 上中学学科网,下精品学科资料
又?AF∥CE,CE?DE ?AF⊥DE.
?MA⊥平面ABC,
?AF是MF在平面ABC内的射影, ?MF⊥DE.
??MFA为二面角M?DE?A的平面角,?MFA?30?.
在Rt△MAF中,AF?1aBC?,?MFA?30?, 22?AM?3·················································································································· 8分 a. ·
6设C到平面MDE的距离为h,
?VM?CDE?VC?MDE.
11?S?CDE?MA?S△MDE?h 33S△CDE1a23?CE?DE?,MA?a, 286S△MDE?11AF32DE?MF?DE??a, ?22cos30121a23132a??a?h, ???386312?h?aa,即C到平面MDE的距离为. ······································································ 12分 44
19.(本小题满分12分)
某企业准备投产一批特殊型号的产品,已知该种产品的成本C与产量q的函数关系式为
q3C??3q2?20q?10(q?0)
3该种产品的市场前景无法确定,有三种可能出现的情况,各种情形发生的概率及产品价格p与产量q的函数关系式如下表所示:
市场情形 好 中 差 概率 0.4 0.4 0.2 价格p与产量q的函数关系式 p?164?3q p?101?3q p?70?4q 中学学科网学科精品系列资料 WWW.ZXXK.COM 版权所有@中学学科网
中学学科网学科精品系列资料 WWW.ZXXK.COM 上中学学科网,下精品学科资料
设L1,L2,L3分别表示市场情形好、中差时的利润,随机变量?k,表示当产量为q,而市场前景无法确定的利润.
(I)分别求利润L1,L2,L3与产量q的函数关系式; (II)当产量q确定时,求期望E?k;
(III)试问产量q取何值时,E?k取得最大值.
本小题主要考查数学期望,利用导数求多项式函数最值等基础知识,考查运用概率和函数知识建模解决实际问题的能力. (I)解:由题意可得
q3L1?(164?3q)?q?(?3q2?20q?10)
3q3??+144q?10 (q?0).
3q3?81q?10 (q?0). 同理可得L2??3q3L3???50q?10 (q?0). ···························································································· 4分
3(II)解:由期望定义可知
E?q?0.4L1?0.4L2?0.2L3
q3q3q3?0.4*(?+144q?10)?0.4*(??81q?10)?0.28*(??50q?10)
333q3???100q?10. ················································································································ 8分
3(III)解:由(II)可知E?q是产量q的函数,设
q3f(q)?E?q???100q?10 (q?0),
32得f'(q)??q?100.令f'(q)?0解得
q?10,q??10(舍去).
由题意及问题的实际意义可知,当q?10时,f(q)取得最大值,即E?q最大时的产量为10.
中学学科网学科精品系列资料 WWW.ZXXK.COM 版权所有@中学学科网
中学学科网学科精品系列资料 WWW.ZXXK.COM 上中学学科网,下精品学科资料
20.(本小题满分14分)
已知正三角形OAB的三个顶点都在抛物线y2?2x上,其中O为坐标原点,设圆C是OAB的内接圆(点C为圆心) (I)求圆C的方程;
(II)设圆M的方程为(x?4?7cos?)2?(y?7cos?)2?1,过圆M上任意一点P分别
????????作圆C的两条切线PE,PF,切点为E,F,求CE,CF的最大值和最小值.
本小题主要考查平面向量,圆与抛物线的方程及几何性质等基本知识,考查综合运用解析几何知识解决问题的能力.
2?y12??y2?,y,y(I)解法一:设A,B两点坐标分别为?1?,?2?,由题设知 22????2?y12??y12??y12y2?222?y??y?????????(y1?y2). 222??2??2??222222解得y1?y2?12,
所以A(6,23),B(6,?23)或A(6,?23),B(6,23).
0),则r?设圆心C的坐标为(r,2?6?4,所以圆C的方程为 3············································································································· 4分 (x?4)2?y2?16. ·
解法二:设A,B两点坐标分别为(x1,y1),(x2,y2),由题设知
22. x12?y12?x2?y2222又因为y1?2x2.即 ?2x1,y2?2x2,可得x12?2x1?x2(x1?x2)(x1?x2?2)?0.
由x1?0,x2?0,可知x1?x2,故A,B两点关于x轴对称,所以圆心C在x轴上.
?3?3?3?30),r?2?r,设C点的坐标为(r,则A点坐标为?r,r?,于是有?解得r?4,??22??2?2????所以圆C的方程为(x?4)?y?16. ··············································································· 4分 (II)解:设?ECF?2a,则
222????????????????··········································· 8分 CE?CF?|CE|?|CF|?cos2??16cos2??32cos2??16. ·
中学学科网学科精品系列资料 WWW.ZXXK.COM 版权所有@中学学科网
中学学科网学科精品系列资料 WWW.ZXXK.COM 上中学学科网,下精品学科资料
在Rt△PCE中,cos??x4,由圆的几何性质得 ?|PC||PC||PC|≤|MC|?1?7?1?8,|PC|≥|MC|?1?7?1?6, ········································· 10分 12≤cos?≤,由此可得 23????????16?8≤CE?CF≤?.
9????????16则CE?··································································· 12分 CF的最大值为?,最小值为?8. ·
9所以
21.(本小题满分12分)
已知数列{an},{bn}与函数f(x),g(x),x?R满足条件:
an?bn,f(bn)?g(bn?1)(n?N*).
,t?0,t?2,g(x)?2x,f(b)?g(b),liman存在,求x的取(I)若f(x)≥tx?1n??值范围;
(II)若函数y?f(x)为R上的增函数,g(x)?f?1(x),b?1,f(1)?1,证明对任意
n?N*,liman(用t表示).
n???an?1?tbn?1?1t,得an?1?an?1。又已知t?2,可得 ·解:(I)由题设知?··················· 4分
a?2b2n?1?nan?1?2t2?(an?). ································································································ 4分 t?22t?222t2???tb??0.,?0,所以?an??t?2t?22t?2??由t?0,t?2,f(b)?g(b),可知a1?是等比数列,其首项为tb?2t22t?(tb?)()n?1,即,公比为。于是an?t?22t?2t?22an?(tb?liman?n??2t2t)()n?1?。又liman存在,可得0??1,所以?2?t?2且t?0。
n??t?22t?222 ························································································································· 8分 2?t?1(II)证明:因为g(x)?f(x),所以an?g(bn?1)?f?1(bn?1),即bn?1?f(an)。下面用
*数学归纳法证明an?1?an(n?N).
(1) 当n?1时,由f(x)为增函数,且f(1)?1,得a1?f(b1)?f(1)?1,
中学学科网学科精品系列资料 WWW.ZXXK.COM 版权所有@中学学科网