又k??6?6不符合k??2,?2,所以舍去. 5??可知k??6?6可使得以线段AB为直径的圆过双曲线的右焦点. 521、解:(1)设P?x,y?为轨迹上的动点,由题意
yy1????x2?4y2?4 x?2x?24x2x22即?y?1,?点P的轨迹在椭圆C:?y2?1上;
44(2)(Ⅰ)当直线AB垂直于x轴时,AB?2,此时S?MAB?1
(Ⅱ)当直线AB不垂直于x轴时,设该直线方程为y?kx,代入椭圆中
得:A、B两点的坐标为:????24k2?1,???, 24k?1?2k则AB?41?k21?4k2 k?又点M到直线AB的距离d?1221?k,
?S?MAB2k?11?AB?d? 221?4k4k2?4k?14k?1? 4k2?14k2?1?S?MAB?由
4k1S?2,得,等号成立时 ??1k???MAB24k?121综上,S?MAB的最大值是2,此时kAB??
2
2y12y2,y1),P(,y2),?P、M、A三点共线, 22、解:(I)设点M(44?kAM?kDM,即y1y12?14?y1?y2, 2y12y2?44 16
即y11?,?y1y2?4 2y1?4y1?y2
2y12y2?OM?OP???y1y2?5.
44 (II)设∠POM=α,则|OM|?|OP|?cos??5. ?S?ROM?5,?|OM|?|OP|?sin??5.由此可得tanα=1 2又??(0,?),???45?,故向量OM与OP的夹角为45?.
2y3,y3),?M、B、Q三点共线,?kBQ?kQM, (Ⅲ)设点Q(4y32y3?14?y1?y3y3?11?, ,即222y1y3y3?4y1?y3?442?(y3?1)(y1?y3)?y3?4,即y1y3?y1?y3?4?0
?y1y2?4,即y1?444,??y3??y3?4?0, y2y2y2
即4(y2?y3)?y2y3?4?0.(*)
?kPQ?y2?y34?, 22y2?y3y3y2?442y24?直线PQ的方程是y?y2?(x?)
y2?y342即(y?y2)(y2?y3)?4x?y2,即y(y2?y3)?y2y3?4x.
由(*)式,?y2y3?4(y2?y3)?4,代入上式,得(y?4)(y2?y3)?4(x?1). 由此可知直线PQ过定点E(1,?4).
17