(2)如图,建立空间直角坐标系M?xyz.
P(0,0,1),A(3,2,0),B(0,1,0),C(0,?1,0),AB?(?3,?1,0),PB?(0,?1,1),PC?(0,?1,?1),设平面ABP的法向量为n?(x,y,z),则????3x?y?0???y?z?0,
令x??1,解得y?3,z?3,即n?(?1,3,3),
|n?PC||n||PC|2314427记直线PC与平面PAB所成角的平面角为?,则sin????
即直线PC与平面PAB所成角的正弦值为1x427.
1x220.(1)当a??1时,f(x)?xlnx?',f(1)??1,f'(x)?lnx?1?,
f(1)?2,从而曲线y?f(x)在x?1处的切线为y?2(x?1)?1,即y?2x?3.
(2)对任意的x1,x2?[,2],都有f(x1)?g(x2)成立,从而f(x)min?g(x)max
21对g(x)?x?x?3,g(x)?3x?2x?x(3x?2),从而y?g(x)在[,]递减,[,2]递增,
2331g(x)max?max{g(),g(2)}?1.
232'2122又f(1)?a,则a?1. 下面证明当a?1时,xlnx?f(x)?xlnx?ax?xlnx?1x'ax?1在x?[12,2]恒成立. 1x?1.
'1x,即证xlnx?1x2令h(x)?xlnx?1,则h'(x)?lnx?1?,h(1)?0.
'当x?[,1]时,h(x)?0,当x?[1,2]时,h(x)?0,从而y?h(x)在x?[,1]递减,x?[1,2]递增,
221h(x)min?h(1)?1,
从而a?1时,xlnx?caax?1在x?[12,2]恒成立.
21.(1)由于e??12,c?12a,b?32a,
直线AB的方程为y?32x?32a,
|321?a|?34x2原点O到直线AB的距离为d?3a7?2217,
解得:a?2,b?3,椭圆方程为
224?y23?1.
??3x?4y?12(2)联立?,则(3m2?4)y2?63my?3?0.
??x?my?3设P(x1,y1),Q(x2,y2),P'(x1,?y1),
?63m3m?42y1?y2?,y1y2??33m?42.
直线PQ的方程为y?y1?'y2?y1x2?x1(x?x1),
令y?0,则x?x1y2?x2y1y1?y2?(my1?3)y2?(my2?y1?y23)y1
?2my1y2?3(y1?y2)y1?y2?433 即直线PQ与x轴交于定点('433,0).
22.证明:(1)由于an?1?an??若an?1?an,则an?0,与a1?a1?12?a2?a3??an,
an2n(n?1)?0,则an?1?an.
12矛盾,从而an?1?an,
又
an?1an?1?ann(n?1)?1?12n(n?1)?0,an?1与an同号,
又a1?12?0,则an?1?0,即0?an?1?an.
(2)由于0?an?1?an,则an?1?an?ann(n?1)1an?11an?21a11an?an?anan?1n(n?1)1n?11a1.
即
1an?1an?1??1n(n?1)1an?1n?1?1n1,
??1n?,
当n?2时,
1an?(?1an?1)?(an?112?)??(1a2?)?1a1
?1n?1?1n?1n?2?1n?1??1???3?1n?3n?1n?0
从而an?n3n?1
12当n?1时,a1?(3)
an?1an?1?,从而an??1?n3n?1.
111(?), 2nn?11)?n?.
2n?1ann(n?1)a3a2a1n(n?1)?1?叠加:Sn?
a2a1???an?1an?n?12(1?1