Forecasting Financial Time Series with Support Vector Machin(2)

2021-09-24 20:39

C.RelatedResearchintheFieldofTechnicalAnalysisOverthelast15years,therehasbeenavastamountofscienti cinvestigationstousingmachinelearningmethodsfortechnicalanalysis.

[8],forexample,useabackpropagationneuralnetwork(multilayerperceptron)withonehiddenlayertopredictthedailyclosepricesofthestockindexS&P500,andcomparetheresultstoanARIMA-model.Asaresult,theyshowthatalthoughtheneuralnetworkhasahighertolerancetomarket uctuations,itsoutputistoovolatiletoindicatelong-termtrends.Abettersuitedapproachisdescribedin[9],whichutilizesrecurrentElmanneuralnetworks[10]forforecastingforeignexchangeprices.Itiscombinedwithamechanismtoautomaticallychooseandoptimizethenetwork’sparameters.Asaresult,itishighlightedthattheforecastsdonotdifferasmuchbetweendifferentmodelsasbetweendifferentinputdata.Foronlytwooutof veexchangerates(JPY/USDandGBP/USD),reliablepredictionsarepossible,whereasfortheotherrates,thepredictionaccuracyissimilartoanaiveforecast.

[11]usesamodi edSVMmodelforregressionwiththe(static)Gaussiankernel.ByadjustingtheregularizationconstantCwithaweightfunction,recenterrorsaremoreheavilypenalizedthandistanterrors,thusincreasingthein uenceofthemostrecentstockprices.Inadditiontothat,[12]addsasimilarweightfunctiontothethresholdε,whichlimitsthetoleranceofVapnik’sε-insensitiveerrorfunction[13].Thisapproachhelpstofurtherreducethecomplexityofthebuiltmodelandthenumberofsupportvectors.Furtheremphasizingtheneedofthoroughdatapreparation,[14]usessupportvectorclassi cationcombinedwithavarietyofdifferentpre-processingmethods.Asakernelfunction,

theyusethepolynomialkernelinadditiontotheGaussiankernelfunction,paredtoabackpropagationnetwork,theGaussianversionheavilyincreasesthemeasuredpredictionaccuracy.

Althoughallthesearticleswereabletopresentsomesuccessintheirexperiments,themajor awisobvious:Withastatickernelfunctionitisonlypossibletoincorporateacertain(limited)amountofinformationaboutthechart’shistory.Theinherenttemporalstructureofthedatacannotbeanalyzedap-propriately,leadingtorelativelypoorandunstablepredictionresults.

III.SUPPORTVECTORMACHINESWITHDYNAMIC

KERNELFUNCTIONSA.FundamentalsofSupportVectorMachines

Inthisarticle,cost-sensitivesupportvectormachines(C-SVM)andν-SVMareusedtoclassifythetimeseriesusingcharacteristicattributesextractedfromthetimeseriesasinputs.Basically,SVMuseahyperplanetoseparatetwoclasses[15]–[18].Forclassi cationproblemsthatcannotbelinearlyseparatedintheinputspace,SVM ndasolutionusinganon-linearmappingfromtheoriginalinputspaceintoahigh-dimensionalso-calledfeaturespace,whereanoptimallyseparatinghyperplaneissearched.Thosehyperplanesarecalledoptimalthathaveamaximalmargin,wheremarginmeanstheminimaldistancefromtheseparatinghyperplanetotheclosest(mapped)datapoints(so-calledsupportvectors).Thetransformationisusuallyrealizedbynonlinearkernelfunctions.C-SVMandν-SVMbothallow,butalsominimizemisclassi cation.

Comparedtothepopulararti cialneuralnetworks,SVMhaveseveralkeyadvantages:Bydescribingtheproblemasaconvexquadraticoptimizationproblem,theyareensuredtoconvergetoauniqueglobaloptimuminsteadofonlyapossiblylocaloptimum.Additionally,byminimizingthestructuralriskofmisclassi cation,SVMarefarlessvulnerabletoover tting,oneofthemajordrawbacksofstandardneuralnetworks.B.RelatedWorkintheFieldofDynamicKernelFunctionsAnoverviewandcomparisonofmethodsfortimeseriesclassi cationwithSVMcanbefoundin[19]or[20],forinstance.OnecommonmethodforclassifyingtimeserieswithSVMistouseoneofthedefaultstatickernels(i.e.,poly-nomialorGaussian).Forspeakerveri cation[21],phoneticclassi cation[22],orinstrumentclassi cation[23]thishassuccessfullybeendone.Abigdisadvantageofthisapproachisthatstatickernelsareunabletodealwithdataofdifferentlength.Therefore,itisnecessarytore-samplethetimeseriestoacommonlength,ortoextracta xednumberoffeaturesbeforestatickernelscanbeapplied.Itisobviousthatthere-samplingorthereductiontosomeextractedfeaturesinducesalossofinformationandisnotverywellsuitedtodealwithtimeseriesofvariablelength,wherealinearfunctionforre-scalingisnotapplicable.Amoresophisticatedapproachistousemethodsthatdirectlycomparethedatapointsoftwotimeseriesinamore exibleway,forexamplewith

tangentdistance[24],timealignment[25]–[27],ordynamictimewarpingkernels[28].Alsoprobabilisticmodels,suchasHMM8hiddenMarkovmodels)andGMM(Gaussianmixturemodels),thataretrainedonthetimeseriesdata,canbeusedincombinationwithSVM.Theso-calledFisher-kernelshavebeenwidelyused,e.g.,forspeechrecognition[29],[30],speakeridenti cation[31]–[33],orwebaudioclassi cation[34].[35],[36]usedanothersimilaritymeasureonGMM,theKullback-Leiblerdivergence,forspeakeridenti cationandveri cation.

Altogether,wecanstatethatdynamickernelfunctions[20]incorporatetemporalinformationdirectlyintoansupportvectormachine’skernelanduseitforcalculatingthesimilaritybetweendifferentinputtimeseries.Therefore,itbecomespos-sibletoalsodetectsimilaritiesbetweenmisalignedsequencesoravaryingfrequencyofthecontainedpatterns.C.DynamicTimeWarpingasKernelFunctionforSVMInourwork,weusedakernelbasedonthedynamictimewarping(DTW)method,whichhaspreviouslybeenutilizedforhandwritingandspeechrecognitionin[27],[28].Wealsorelyonownresultsdescribedin

Forecasting Financial Time Series with Support Vector Machin(2).doc 将本文的Word文档下载到电脑 下载失败或者文档不完整,请联系客服人员解决!

下一篇:行政执法与刑事司法衔接工作的几个问题_刘福谦

相关阅读
本类排行
× 注册会员免费下载(下载后可以自由复制和排版)

马上注册会员

注:下载文档有可能“只有目录或者内容不全”等情况,请下载之前注意辨别,如果您已付费且无法下载或内容有问题,请联系我们协助你处理。
微信: QQ: