Forecasting Financial Time Series with Support Vector Machin(4)

2021-09-24 20:39

1.0000

0.6727

1.0000

0.8027

1.0000

0.4829

Inasecondstep,wecomparedtheperformanceofSVMwithdifferentkernelfunctions.Fortheseexperiments,threedifferentdynamickernelfunctionstakenfrom[41]wereused:Thedynamictimewarpingkernel(DTW)aswellasthelongestcommonsubsequencekernelswithglobal(LCSS-global)aswellaslocalscaling(LCSSlocal).Asaresult,theDTW-kernelwasnotonlyconsiderablyfasterthanitsopponents.Duringthewholetraining,theLCSSkernelswerenotonceabletooutperformthepredictionaccuracyoftheDTWkernelonthetestdata(seeFig.4).Additionally,theLCSSkernelsappearedtorelyonspeci cattributes(features),whereastheDTWkernelshowedgoodresultsforalldatasets.ForthechoiceoftheSVMtype,weconductedclassi cationandregressionexperiments:Apartfromtheε-SVR(supportvectorregression)[42]andtheν-SVR[43],wemeasuredtheperformancefortheC-SVC(supportvectorclassi cation[44]andtheν-SVC[43].Insteadoftryingtopredictactualvalues,thesetechniquesweretrainedtoclassifythedataintotwocategories:oneforexpectedincreasing(rising),theanotheroneforexpecteddecreasing(falling)trends.Asaresult,wesawthatthepredictionresultsoftheν-SVRsigni cantlyoutperformedallothervariants,regardingbothMASE(forregressiontypes)andthehitrate,withtheε-SVRformulationrankingsecond.

Finally,weconductedsomeexperimentsinwhichwevariedthetotalamountandthelengthoftheinputtimeseriesoftheSVM.Con rmingtheobservationof[45],anincreaseintheamountofinputinformationdoesnotnecessarilyincreasethepredictionaccuracy.Instead,wecanseeinFig.4thatasmalleramountofcurrentinformationsigni cantlyimprovesthepredictionaccuracycomparedtoalargebacklogofhis-toricalinformation.C.MajorFindings

Fortheinputinformation,westatedthatthesheeramountofhistoricaldatadoesnotnecessarilyproducebetterresults.Instead,themainfocusshouldlieonthoroughpre-processingroutinestocapturetemporalpatternsofdifferentscale.Inthisregard,theappliedtechniqueofcreatingamulti-dimensionalvectorwithratesofchangeofdifferentmagnitudeworkedexceptionallywell.

Apartfromthat,ourresultsclearlyshowthehighabilityofSVMwithdynamickernelfunctionsintheareaof nancialtimeseriesforecasting.TheDTWkernelwasabletoproduceahitrateofupto70%overthewholehistoryofbothexaminedderivatives,comparedtoahitrateofonly47%forthenaiveforecast.Thisisevenmorerelevantasthehitratedirectlycorrelatestotheinputofcommonalgorithmictradingsystemsystems,triggeringactionswitheachtrendshift.

V.CONCLUSIONANDOUTLOOK

Inthisarticle,ashortintroductionintothe eldoftechnicalanalysisof nancialtimeserieshasbeengiven,andtheapplicationofSVMwithdynamickernelfunctionsinthisdomainhasbeenexamined.Aswedescribed,thedevelopedtechniquehasahighabilitytopredictfuturepricemovements

Fig.4.Thesegraphsshowsthedependenceofthepredictiononthesizeofthetimeslotusedeachtimeforpredictionandtraining:Theusedkernelfunctionsarefromlefttoright:DTW,LCSSglobal,andLCSSlocal.Theroundmarksinthediagramdenotetheresultswithatrainingsetof75periods,whereassquareandtriangularmarksshowtheresultsfor150and300periods.

ingdynamickernelfunctions,itispossibletouseawholerangeoftheprecedingseriesandanalyzeitasawholewiththeSVM’skernel.Aswecouldshow,thisapproachsigni cantlyincreasesthepredictionaccuracyandreliablyperformsbetterthanastandardnaiveforecast.

Forreal-worldexperimentsandapplicationsofthedevel-opedsystem,aninterfacetothetechnicalanalysissoftwareInvestox[46]wascreated(seeFig.5).Usingthisapplication,itbecomesnotonlypossibletoverifytheresultsonhistoricaldatausingavirtualbroker,butalsotoapplythesystemdirectlytocurrentdatainputsinaconstantlyevolvingmarketenvironment(seealso[47]).

Inourfutureresearch,theperformanceofthedevelopedsystemwillbeexaminedindifferenttradingconstellations.Contrarytotheworkonend-of-daydata,theperformanceofthetechniqueisalsohighenoughtouseitintheareaofintra-dayforecasting.Thisinvolvespredictionsinintervalsofonlyseveralminutes,ifnotjustinseconds’intervals.Inthisenvironmentofhighuncertaintyandconstanttrendshift,verydifferentrequirementsmayapply.Ontheotherhand,itisalsopossibletonotonlyusetheinputofonepre-processedtimeseries,buttocombinedifferentmarketpricesforpredictingacertainvalue.Thiskindofinter-marketanalysismayhavethepotentialtodetect uctuationsinaspeci cpriceandprematurelyratetheresultingin uenceonthetargetvalue.

REFERENCES

[1]S.Nison,Japanesecandlestickchartingtechniques:acontemporary

guidetotheancientinvestmenttechniquesforthefareast.PrenticeHallInternational,1991.

[2]R.PrechterandA.Frost,Elliottwaveprinciple:keytomarketbehavior.

JohnWiley&Sons,1978.

[3]R.Freedman,Introductionto nancialtechnology.Elsevier,2006.[4]L.Stevens,Essentialtechnicalanalysis:toolsandtechniquestospot

markettrends.JohnWiley&Sons,2002.

[5]E.Fama,“Ef cientcapitalmarkets:areviewoftheoryandempirical

work,”JournalofFinance,vol.25,pp.383–417,1970.[6]EurexFrankfurtAG,“Eurex.”[Online].Available:

[7]J.Hull,Options,Futures,andOtherDerivatives.Prentice-Hall,2006.

[8]S.-i.WuandR.-P.Lu,“Combiningarti cialneuralnetworksand

statisticsforstock-marketforecasting,”inProceedingsofthe1993ACMConferenceonComputerScience,1993,pp.257–264.

Forecasting Financial Time Series with Support Vector Machin(4).doc 将本文的Word文档下载到电脑 下载失败或者文档不完整,请联系客服人员解决!

下一篇:行政执法与刑事司法衔接工作的几个问题_刘福谦

相关阅读
本类排行
× 注册会员免费下载(下载后可以自由复制和排版)

马上注册会员

注:下载文档有可能“只有目录或者内容不全”等情况,请下载之前注意辨别,如果您已付费且无法下载或内容有问题,请联系我们协助你处理。
微信: QQ: