答案 C
例1 求[2sin50°+sin10°(1+3tan10°)]·2sin280?的值.
解 原式=??2sin50??sin10????3sin10???????1??cos10????2sin80? ???=
(2sin50??sin10??cos10??3sin10?cos10?)?2sin80?
??12cos10??3?=??2sin50??2sin10??2sin10????2cos10? ?cos10?????=???2sin50??2sin10?sin40??cos10????2cos10?
=
2sin60?cos10??2cos10??22sin60?
=22?32?6. 例2 已知cos(???2)??19,sin(?2??)?23,且?2????,0???????2,求cos2的值.解 ???????2???????2?????????2,
∵?2<?<?,0<?<?2, ∴
?4<?-????2<?,-4<2-?<4. ∴sin???????2??=1?cos2???????452??=9,
cos????2????=?1?sin2????2?????=53.
∴cos
???=cos???????2??cos??????????752?2???+sin?????2??sin??2???=.
?27例3 (12分)若sinA=
55,sinB=1010,且A,B均为钝角,求A+B的值. 解 ∵A、B均为钝角且sinA=5105,sinB=10, ∴cosA=-1?sin2A=-255=-
25, cosB=-1?sin2B=-310=-
31010,
∴cos(A+B)=cosAcosB-sinAsinB
36
4分
?25??310?×??=?????510?????-5×10=2 ?5210? ① 8分
又∵
??<A<?, <B<?, 22
10分
∴?<A+B<2? 由①②知,A+B=
②
12分
7?. 42222
例4 化简sin?·sin?+cos?cos?-
1cos2?·cos2?. 2122
·(2cos?-1)·(2cos?-1) 2解 方法一 (复角→单角,从“角”入手)
2222
原式=sin?·sin?+cos?·cos?-
2222
=sin?·sin?+cos?·cos?-
12222
(4cos?·cos?-2cos?-2cos?+1) 21 2222222
=sin?·sin?-cos?·cos?+cos?+cos?-
22222
=sin?·sin?+cos?·sin?+cos?-
1 2=sin?+cos?-2
2
111=1-=. 2221cos2?·cos2? 2方法二 (从“名”入手,异名化同名)
2222
原式=sin?·sin?+(1-sin?)·cos?-
2222
=cos?-sin? (cos?-sin?)-
1cos2?·cos2? 222
=cos?-sin?·cos2?-
1cos2?·cos2? 21??2
=cos?-cos2?·?sin2??cos2??
2??=
1?cos2?1??-cos2?·?sin2??(1?2sin2?)? 22??=
1?cos2?11-cos2?=. 2221?cos2?1?cos2?1?cos2?1?cos2?1·+·-cos2?·cos2?
22222方法三 (从“幂”入手,利用降幂公式先降次) 原式==
1111(1+cos2?·cos2?-cos2?-cos2?)+(1+cos2?·cos2?+cos2?+cos2?)-·cos2?·cos2?=. 44221cos2?·cos2? 2方法四 (从“形”入手,利用配方法,先对二次项配方)
原式=(sin?·sin?-cos?·cos?)+2sin?·sin?·cos?·cos?-2
=cos(?+?)+
2
11sin2?·sin2?-cos2?·cos2? 22 37
=cos(?+?)-22
1·cos(2?+2?) 2112
·[2cos(?+?)-1]=. 22=cos(?+?)-
22
1.不查表求sin20°+cos80°+3sin20°cos80°的值.
22
解 sin20°+cos80°+3sin20°cos80°
=
11(1-cos40°)+ (1+cos160°)+ 3sin20°cos80° 22=1-=1-
11cos40°+cos160°+3sin20°cos(60°+20°) 2211cos40°+(cos120°cos40°-sin120°sin40°)+3sin20°(cos60°cos20°-sin60°sin20°) 22=1-=1-
113332
cos40°-cos40°-sin40°+sin40°-sin20°
42244331cos40°- (1-cos40°)=.
4442.求值:(1)已知cos???????4???????5?的值; ? =-,sin????=,且<?<?,0<?<,求cos
5213222?2??11, ?、?均为锐角,求cos?的值. 14(2)已知tan?=43,cos(?+?)=-解 (1)???∵
??????????, ?+???? =22??2???<?<?,0<?<. 22∴???????????∈?,??,??∈??,? 2?4?2?24?∴sin????????32?=1?cos(??)=,
522????12?cos????=1?sin2(??)?,
2?213?∴cos
???????=cos?(??)?(??)?
22?2?=cos?????????????????cos????-sin????sin????
2?2???2?2??4125363=(?)×-×=-.
56513135(2)∵tan?=43,且?为锐角,
38
∴
sin??43,即sin?=43cos?, cos?22
又∵sin?+cos?=1,
∴sin?=
143,cos?=.
77∵0<?,?<
?,∴0<?+?<?, 253. 14∴sin(?+?)=1?cos2(???)=而?=(?+?)-?,
∴cos?=cos[(?+?)-?]
=cos(?+?)cos?+sin(?+?)sin?
431?11?153=???×+×=.
27?14?7143.在△ABC中,角A、B 、C满足4sin
2
7A?C-cos2B=,求角B的度数. 22解 在△ABC中,A+B+C=180°, 由4sin得4·
2
7A?C-cos2B=, 221?cos(A?C)72
-2cosB+1=,
222
所以4cosB-4cosB+1=0. 于是cosB=
1,B=60°. 2??????4.化简:(1)2sin??x?+6cos??x?;
?4??4?2cos2??1(2).
???2???2tan????sin?????4??4??1??3??????cos??x?? 解 (1)原式=22?sin??x???2?4????2?4???????????=22?sinsin??x??coscos??x??
6??4???6?4?????=22cos???x?=22cos(x-). 12?64?(2)原式=
cos2?1?tan?1?tan???????1?cos??2????2???=
cos2?cos2?(1?sin2?)1?sin2?=1.
一、选择题
39
1.已知tan(?+?)=
A.D.1 62????1??,tan????=,那么tan ????等于 54?44??? ( )
13133 B. C.
222218答案 C
2.sin163°·sin223°+sin253°·sin313°等于
A.?
( )
113 B. C. ?
22D.
32 答案 B
3.(2008·长沙模拟)已知x?(??2,0),cosx?45,则tan2x等于 A.?247 B. ?724 D.
247 答案 A
4.已知cos2?=12(其中?∈??????4,0??),则sin?的值为 A.12 B.-12 D.-
32 答案 B 5.(cos??12?sin?12)(cos12?sin?12)等于 A.-32 B.-12
D.
32 答案 D
2sin2
x?1
6.若f(x)=2tanx-2,则f??? sinxx??12??的值为
2cos2
A.-
433 B.8 40
2( ) C. 724 ( )
C.
32 ( )
C.
12 ( )
C.43