数据挖掘
25. 具有较高的支持度的项集具有较高的置信度。(错)
26. 聚类(clustering)是这样的过程:它找出描述并区分数据类或概念的模型(或函数),以便能够使用模型预测类标记未知的对象类。 (错) 27. 分类和回归都可用于预测,分类的输出是离散的类别值,而回归的输出是连续数值。(对) 28. 对于SVM分类算法,待分样本集中的大部分样本不是支持向量,移去或者减少这些样本对分类结果没有影响。 (对)
29. Bayes法是一种在已知后验概率与类条件概率的情况下的模式分类方法,待分样本的分类结果取决于各类域中样本的全体。 (错) 30.分类模型的误差大致分为两种:训练误差(training error)和泛化误差(generalization error). (对)
31. 在决策树中,随着树中结点数变得太大,即使模型的训练误差还在继续减低,但是检验误差开始增大,这是出现了模型拟合不足的问题。 (错)
32. SVM是这样一个分类器,他寻找具有最小边缘的超平面,因此它也经常被称为最小边缘分类器(minimal margin classifier) (错)
33. 在聚类分析当中,簇内的相似性越大,簇间的差别越大,聚类的效果就越差。(错) 34. 聚类分析可以看作是一种非监督的分类。(对) 35. K均值是一种产生划分聚类的基于密度的聚类算法,簇的个数由算法自动地确定。(错 36. 给定由两次运行K均值产生的两个不同的簇集,误差的平方和最大的那个应该被视为较优。(错) 37. 基于邻近度的离群点检测方法不能处理具有不同密度区域的数据集。(对) 38. 如果一个对象不强属于任何簇,那么该对象是基于聚类的离群点。(对)
39. 从点作为个体簇开始,每一步合并两个最接近的簇,这是一种分裂的层次聚类方法。(错)40. DBSCAN是相对抗噪声的,并且能够处理任意形状和大小的簇。(对)