第四册高等数学
第2章 (之11)第12次作业
教学内容:§2.5 高阶导数
**1. 设 y?ln(x?1?x2),求y??.
y??1(1?x解:
x?1?x21?x2)?11?x2 y????1(1?x2)?322?2x??x(1?x2)3 2.
**2. 设 y?f?u?,u???x? 均存在 2 阶导数试推导公式 d2y222?dy?du?dydudx2du2??dx???du?dx2。 dydx?dy解:由du?dudx,得
d2y?dy?d?dydu?dyd?du?dud?dy dx2?ddx??dx???dx???dudx??????dx????dxdx???du? dudx???dy?2?d????dydudu?du?dx??dudx2??du?du?d2ud22dx?dyy?du???du?dx2?du2???dx??
????.
**3. 设 y?f(xex),其中f(u)二阶可导,求y??.
解: y??f?(xex)??ex?xex?
y???f??(xex)??ex?xex?2?f?(xex)??2ex?xex?
222**4. 求由方程 x3?y3?a3 所确定的隐函数 y?x? 的二阶导数。
211x?3?2解:两边同时对 x 求导数,得 33y?3?y??0, ?*?
?29?13x?43两边同时再对x求导数,得
y???1321??2?1?32???y??y???y3?y????03?3?,
4整理得
??x???y?**5.设 ?1?t1?ta3x?43y.
dy2,试证 dx???t?2??2y.
3dydydx?证:
1?tdt???dx??11?t???dt??21?t?, ?dy?d???dx?11?t??21?t2??1???21?dydx22??dtdxdt?1?t?2???t??1???21????1?t??2?1?t?2??2?1?t?1?t??2y3.
***6.设x???y?是y?f?x?的反函数,f??x??0,且f????x?存在,证明:
????y???f???x?(1)
?f??x??3?????y??3?f???x???f??x??f????x?2; (2)
?f??x??51f??x?。于是
.
???y??证:(1)由反函数与直接函数导数的关系,知有
?1?d??f??x??dxd???y?f???x?f???x?????????y????????y??dydxdy?f??x??2?f??x??3.
??f???x??d?3??????fx??dx3?????y??(2)
d????y?dy??dxdy
2??f????x??f??x???f???x??3?f??x???f???x?
2?f??x???f??x??56????y?
?3?f???x???f??x?f????x? .
**7. 设 y?cos3x 求yy?122(n). 12?6cos(6x?解:
(1?cos6x) y???)2,
y???12?6cos(6x?22?2),
n?2)
??,y(n)?126cos(6x?n.
**8. 设 y?x(x?1)(x?2)(x?3)?(x?n),求yy?xn?1(n)与y(n?1).
?n(n?1)2x??(?1)n!xnn解:
y(n),
n(n?1)2n!
?(n?1)!x?,
y(n?1)?(n?1)!.
**9. 设u?u?x?,v?v?x?都是n次可微函数,有如下莱布尼兹公式
?uv?(n)???n??n?k??k??v?k??uk?0??.
3xn 利用莱布尼兹公式,求函数y?xe的 5 阶导数.
解:由于当n?4时,(x)y?5?3(n)?0。所以,利用莱布尼兹公式可求得
xk??5?3????k??xk?0??5???5?k??e??
?5??5??5??5?3xx2xx??????????6?e??6x?e??3x?e??x?e?2??3??4??5?????????
?e(x?15x?60x?60).
x32
第3章 (之1) 第13次作业
教学内容:§3.1微分
设 y(x)?(cosx)sinx?tan2x,(0?x??4),求dy.**1.
解: dy?y?(x)dx
?(cosx)
2?sinx?cosxln(cosx)?sinx?tanx??2sec2xdx.
?
**2. 设 y(x)?ln(e解:
令 u?e?2x?2x?1?e?4x)求dy.
,则 dy?dydudu?11?u2du ??2e?2xdx?4x1?e.
?ln?(x)?设 ?(x)?0,且?(x)处处可微,求d????(x)?? **3.
解:
记u?ln?(x)?(x),
?ln?(x)???(x)???(x)?ln?(x)?d????(u)du???(u)?dx?2?(x)?(x)?? 则
???(x)?(x)2?1?ln?(x)??????ln?(x)??dx?(x)??.
**4. 求由方程33x?y?3axy?0(a?0)所确定隐函数33,y?y(x)的微分dy.
解: 由x?y?3axy?0, 得
3xdx?3ydy?3a(ydx?xdy)?0
?dy?ay?xy2222
?axdx.
**5.
求由方程ysinx?cos(x?y)?0所确定隐函数y?y(x)的微分dy.
解: 由 dy?sinx?ycosxdx?sin(x?y)?(dx?dy)?0
得 dy??ycosx?sin(x?y)sinx?sin(x?y)dx
.
**6. 用微分方法计算解:令 f(x)?3326的近似值.
f(x)?f(x0)?f?(x0)??xx0?27.?x??1
3x,?
26?3?127?2.959.
**7.用微分代替增量,计算cos151的值.
00解:
f(x)?cosx.x0?150?56?,?x?1?0?180,
f(151)?cos15000?(sin150)?0?180??32??360??0.8747.
**8.在一个内半径为的金,已知铁的密度为个金球中含铁和金的质435cm外半径为5.2cm的空心铁球的表面上镀7.86g/cm,金的密度为量。33一层厚0.005cm
18.9g/cm,试用微分法分别求这
V?解:
?r,r1?5.?r1?0.2.?1?7.86,3
2 m1?7.86?4?r1??r1?7.86?20??493.6(g),
r2?5.2,?r2?0.005,?2?18.9,
m2?18.9?4?(5.2)?0.005?32.1(g).
2