概率论与数理统计试题库及答案(2)

2018-11-17 18:37

1.10把钥匙中有3把能打开门,今任意取两把,求能打开门的概率。

2.任意将10本书放在书架上。其中有两套书,一套3本,另一套4本。求下列事件的概率。 1) 3本一套放在一起。 2)两套各自放在一起。

3)两套中至少有一套放在一起。

3.调查某单位得知。购买空调的占15%,购买电脑占12%,购买DVD的占20%;其中购买空调与电脑占6%,购买空调与DVD占10%,购买电脑和DVD占5%,三种电器都购买占2%。求下列事件的概率。

1)至少购买一种电器的; 2)至多购买一种电器的; 3)三种电器都没购买的;

4.仓库中有十箱同样规格的产品,已知其中有五箱、三箱、二箱依次为甲、乙、丙厂生产的,且甲厂,乙厂、丙厂生产的这种产品的次品率依次为1/10,1/15,1/20.从这十箱产品中任取一件产品,求取得正品的概率。

一箱产品,A,B两厂生产分别个占60%,40%,其次品率分别为1%,2%。现在从中任取一件为次品,问此时该产品是哪个厂生产的可能性最大? 有标号1~n的n个盒子,每个盒子中都有m个白球k个黑球。从第一个盒子中取一个球放入第二个盒子,再从第二个盒子任取一球放入第三个盒子,依次继续,求从最后一个盒子取到的球是白球的概率。 7.从一批有10个合格品与3个次品的产品中一件一件地抽取产品,各种产品被抽到的可能性相同,求在二种情况下,直到取出合格品为止,所求抽取次数的分布率。(1)放回 (2)不放回

8.设随机变量X的密度函数为f(x)?Ae求 (1)系数A, (2) P{0?x?1} (3) 分布函数F(x)。

9.对球的直径作测量,设其值均匀地分布在[a,b]内。求体积的密度函数。

10.设在独立重复实验中,每次实验成功概率为0.5,问需要进行多少次实验,才能使至少成功一次的概率不小于0.9。

11.公共汽车车门的高度是按男子与车门碰头的机会在0.01以下来设计的,设男子的身高

?x (???x???),

X?N(168,72),问车门的高度应如何确定?

12. 设随机变量X的分布函数为:F(x)=A+Barctanx,(-??x???). 求:(1)系数A与B;

(2)X落在(-1,1)内的概率; (3)X的分布密度。

13.把一枚均匀的硬币连抛三次,以X表示出现正面的次数,Y表示正、反两面次数差的绝对值 ,求(X,Y)的联合分布律与边缘分布。 14.设二维连续型随机变量(X,Y)的联合分布函数为

6

xyF(x,y)?A(B?arctan)(C?arctan)

23求(1)A、B、C的值, (2)(X,Y)的联合密度, (3) 判断X、Y的独立性。

?Ae?(3x?4y),x?0,y?015.设连续型随机变量(X,Y)的密度函数为f(x,y)=?,

其他0,?求 (1)系数A;(2)落在区域D:{0?x?1,0?y?2}的概率。 16. 设(X,Y)的联合密度为f(x,y)?Ay(1?x),0?x?1,0?y?x, (1)求系数A,(2)求(X,Y)的联合分布函数。

17.上题条件下:(1)求关于X及Y的边缘密度。 (2)X与Y是否相互独立? 18.在第16)题条件下,求f(yx)和f(xy)。

19.盒中有7个球,其中4个白球,3个黑球,从中任抽3个球,求抽到白球数X的数学期望E(X)和方差D(X)。

20. 有一物品的重量为1克,2克,﹒﹒﹒,10克是等概率的,为用天平称此物品的重量

准备了三组砝码 ,甲组有五个砝码分别为1,2,2,5,10克,乙组为1,1,2,5,10克,丙组为1,2,3,4,10克,只准用一组砝码放在天平的一个称盘里称重量,问哪一组砝码称重物时所用的砝码数平均最少?

21. 公共汽车起点站于每小时的10分,30分,55分发车,该顾客不知发车时间,在每小时内的任一时刻随机到达车站,求乘客候车时间的数学期望(准确到秒)。

22.设排球队A与B比赛,若有一队胜4场,则比赛宣告结束,假设A,B在每场比赛中获胜的概率均为1/2,试求平均需比赛几场才能分出胜负?

23.一袋中有n张卡片,分别记为1,2,﹒﹒﹒,n,从中有放回地抽取出k张来,以X表示所得号码之和,求E(X),D(X)。

24.设二维连续型随机变量(X ,Y)的联合概率密度为:f (x ,y)=?求:① 常数k, ② E?XY?及D(XY).

?k,0?x?1,0?y?x

0,其他?25.设供电网有10000盏电灯,夜晚每盏电灯开灯的概率均为0.7,并且彼此开闭与否相互

独立,试用切比雪夫不等式和中心极限定理分别估算夜晚同时开灯数在6800到7200之间的概率。

26.一系统是由n个相互独立起作用的部件组成,每个部件正常工作的概率为0.9,且必须至少由 80%的部件正常工作,系统才能正常工作,问n至少为多大时,才能使系统正常工作的概率不低于 0.95?

27.甲乙两电影院在竞争1000名观众,假设每位观众在选择时随机的,且彼此相互独立,问甲至少应设多少个座位,才能使观众因无座位而离去的概率小于1%。

28.设总体X服从正态分布,又设X与S分别为样本均值和样本方差,又设

7

2

Xn?1?N(?,?2),且Xn?1与X1,X2,???,Xn相互独立,求统计量 Xn?1?XSn的分布。 n?129.在天平上重复称量一重为?的物品,假设各次称量结果相互独立且同服从正态分布若以Xn表示n次称量结果的算术平均值,为使PXn?a?0.1?0.95成立,N(?,0.22),

求n的最小值应不小于的自然数?

30.证明题 设A,B是两个事件,满足P(BA)?P(BA),证明事件A,B相互独立。 31.证明题 设随即变量X的参数为2的指数分布,证明Y?1?e从均匀分布。

?2X??在区间(0,1)上服

8

<数理统计>试题 一、填空题

1.设X1,X2,?,X16 是来自总体X~N(4,?2) 的简单随机样本,?2已知,令

4X?16116服从分布为 (必须写出分布的参数)。 X??Xi,则统计量

16i?1?2.设X~N(?,?),而1.70,1.75,1.70,1.65,1.75是从总体X中抽取的样本,则?的矩估计值为 。

3.设X~U[a,1],X1,?,Xn是从总体X中抽取的样本,求a的矩估计为 。 4.已知F0.1(8,20)?2,则F0.9(20,8)? 。

2?都是参数a的无偏估计,如果有 成立 ,则称??有效的估计。?和??是比?5.?

6.设样本的频数分布为

X 0 1 2 3 4 频数 1 3 2 1 2

则样本方差s2=_____________________。

7.设总体X~N(μ,σ2),X1,X2,?,Xn为来自总体X的样本,X为样本均值,则D(X)=________________________。

8.设总体X服从正态分布N(μ,σ2),其中μ未知,X1,X2,?,Xn为其样本。若假设检验问题为H0:?2=1?H1:?2?1,则采用的检验统计量应________________。 9.设某个假设检验问题的拒绝域为W,且当原假设H0成立时,样本值(x1,x2, ?,xn)落入W的概率为0.15,则犯第一类错误的概率为_____________________。

10.设样本X1,X2,?,Xn来自正态总体N(μ,1),假设检验问题为: H0:?=0?H1:??0,则在H0成立的条件下,对显著水平α,拒绝域W应为______________________。 11.设总体服从正态分布N(?,1),且?未知,设

X1,?,Xn为来自该总体的一个样本,记

1nX??Xini?1,则?的置信水平为1??的置信区间公式是 ;若已知1???0.95,

则要使上面这个置信区间长度小于等于0.2,则样本容量n至少要取__ __。

22X,X,?,XN(?,?)的一个简单随机样本,12n12.设为来自正态总体其中参数?和?均

n1n2X??XiQ??(Xi?X)2Hni?1i?1未知,记,,则假设0:??0的t检验使用的统计量

9

是 。(用X和Q表示)

2X~N(?,?),且?已知、?2未知,设X1,X2,X3是来自该总体的一个样本,13.设总体

1(X1?X2?X3)??2X?2?X?3?X222X?X?X??,X(1)?2?中是统计1231233则,,

量的有 。

14.设总体X的分布函数F(x),设则

X1,X2,?,Xn为来自该总体的一个简单随机样本,

X1,X2,?,Xn的联合分布函数 。

X,?,Xn是

15.设总体X服从参数为p的两点分布,p(0?p?1)未知。设1来自该总体的一个样本,则的有 。

?X,?(Xii?1i?1nni?X)2,Xn?6,max{Xi},Xn?pX11?i?n中是统计量

16.设总体服从正态分布N(?,1),且?未知,设X1,?,Xn为来自该总体的一个样本,记

1nX??Xini?1,则?的置信水平为1??的置信区间公式是 。

22Y~N(?,?),且X与Y相互独立,设X1,?,Xm为来自总体X~N(?,?)YYXX17.设,

X的一个样本;设Y1,?,Yn为来自总体Y的一个样本;SX和SY分别是其无偏样本方差,

22SX/?X22S/?Y服从的分布是 。 则Y2218.设X?N?,0.3?2?,容量n?9,均值X?5,则未知参数?的置信度为0.95的置信

区间是 (查表Z0.025?1.96)

19.设总体X~N(?,?),X1,X2,?,Xn为来自总体X的样本,X为样本均值,则D(X)=________________________。

20.设总体X服从正态分布N(μ,σ2),其中μ未知,X1,X2,?,Xn为其样本。若假设检验问题为H0:?2=1?H1:?2?1,则采用的检验统计量应________________。 21.设X1,X2,???,Xn是来自正态总体N(?,?)的简单随机样本,?和?均未知,记

n1n2X??Xi,???(Xi?X)2,则假设H0:??0的t检验使用统计量Tni?1i?122210


概率论与数理统计试题库及答案(2).doc 将本文的Word文档下载到电脑 下载失败或者文档不完整,请联系客服人员解决!

下一篇:专题16-化学实验设计与探究

相关阅读
本类排行
× 注册会员免费下载(下载后可以自由复制和排版)

马上注册会员

注:下载文档有可能“只有目录或者内容不全”等情况,请下载之前注意辨别,如果您已付费且无法下载或内容有问题,请联系我们协助你处理。
微信: QQ: