当x?(x0,??),F?(x)?0,∴F(x)在(0,x0)单调递减,在(x0,??)单调递增 故F?(1)?e?1?0,F?(0.5)?e?2?0∴又e0?x1?x0?1 2,
111?x0 ?0,故∴Fmin(x)?ex0?lnx0??x0?2x0x0x0即函数y?f?x?和y?g?x?在其公共定义域内的所有偏差都大于2。 解法二:
由于函数y?f?x?和y?g?x?的偏差:F?x??f?x??g?x??ex?lnx,x??0,???
x令F2?x??x?lnx,x??0,??? 1?x??e?x,x??0,???;令F11?xx??∵F,,∴F1?x?在?0,???单调递增,F2?x?在?0,1?单调递减,在x?e?1Fx?1??????12xx?1,???单调递增
x∴F1?x??F1?0??1,F2?x??F2?1??1,∴F?x??e?lnx?F1?x??F2?x??2
即函数y?f?x?和y?g?x?在其其公共定义域内的所有偏差都大于2。
22.证明:连结CE,?PA2?PB?PC,PA?10,PB?5, ?PC?20,BC?15.
又 ?PA与⊙O相切于点A,??PAB??ACP,
??PAB∽?PCA,?ABPB1??. ACPA2C
? O D A ?BC为⊙O的直径,??CAB?90?,
AC?AB?BC?225.
可解得AC?65,AB?35.
又?AE平分?BAC,??CAE??EAB, 又??ABC??E,??ACE∽?ADB,
222B P
E ?ABAD AD?AE?AB?AC?35?65?90 ?AEAC23.
24.解:(Ⅰ)2|x?3|?|x?4|?2,
① 若x?4,则3x?10?2,x?4,?舍去.② 若3?x?4,则x?2?2,?3?x?4. ③ 若x?3,则10?3x?2,?83?x?3. 综上,不等式的解集为{x|83?x?4}. (Ⅱ)设f(x)?2|x?3|?|x?4|,则
?3x?10,x f(x)???4?x?2,3?x?4,?f(x)?1
??10?3x,x?3 ?2a?1,a?12.