第三章 不定积分
例3.45.?xarctan2xdx
112x22dx 解:原式??arctan2xdx?xarctan2x??2221?4x1214x2?1?1dx ?xarctan2x??241?4x2111?x2arctan2x?x?arctan2x?c 248例3.46.?(x?1)arcsinxdx 解:原式?x?sint?(sint?1)tcostdt?1tsin2tdt??tcostdt ?21tdcos2t??tdsint 4?tcos2t1????cos2tdt?tsint??sintdt
4411??tcos2t?sin2t?tsint?cost?C
4811??arcsinx?(1?2x2)?x1?x2?xarcsinx?1?x2?C
44??4.四类杂例
(1)含绝对值的不定积分 例3.47.?xdx
?x2?c1,x?0??2解:原式?F(x)??2,F(x)可导必连续:c1?c2,
??x?c,x?02??2?x2??c1,x?0??2故原式?F(x)??2 。
??x?c,x?01??2例3.48.?x2?2x?3dx
?x2?2x?3,x??1?解: f(x)?x2?2x?3?(x?3)(x?1)???x2?2x?3,?1?x?3,
?x2?2x?3,x?3? 88 / 26
第三章 不定积分
原式?F(x)???132?3x?x?3x?c1,x??1??1f(x)dx???x3?x2?3x?c2,?1?x?3 ,
?3?132?3x?x?3x?c3,x?3?1?1??1?3?c??1?3?c21??33由F(x)可导知,成立?,
2727???9?9?c??9?9?c32?33?10?c???c1??23解得:? ,
?c?18?c?18?10?c?44?c3211?33??132x?x?3x?c1,x??1?3?10?1所以,F(x)???x3?x2?3x??c1,?1?x?3 。
3?344?132x?x?3x??c1,x?3?33?(2)分段函数积分
x?1?x,?例3.49.f(x)??2x?1,1?x?2,求?f(x)dx 。
?x?1,x?2?解:F(x)???x2x?1?2?c1,??f(x)dx??x2?x?c2,1?x?2,
?2?x?x?c3,x?2??2?1??c?2?c2由F(x)可导知,成立?21
??6?c2?4?c331解得:c2???c1,c3?2?c2??c1
22 89 / 26
第三章 不定积分
?x2x?1?2?c1,?3?所以,?f(x)dx??x2?x??c1,1?x?2 。
2??x21?x??c1,x?2?22?(3)递推关系 例3.50.In??sin2nxdx 解:In???sinn?1xdcosx
In??sinn?1xcosx???n?1?cos2xsinn?2xdx
In??sinn?1xcosx??n?1??sinn?2xdx??n?1??sinnxdx
nIn??sinn?1xcosx??n?1?In?2
?n?1?I ?n?1,2,......? 1In??sinn?1xcosx?n?2nn例3.55.In??tan2nxdx
解:In??(tan2nx?tan2n?2x)dx??tan2(n?1)dx
In??tan2n?2xdtanx??tan2(n?1)dx
In?1tan2n?1x?In?1 ?n?1,2,......? 2n?1例3.56.I??sec3xdx
2xsecxdx解:I??secxdtanx?secxtanx??tan
=secxtanx?I??secxdx,
111?sinx?C I?secxtanx?ln241?sinx(4)一些特殊的变换
例3.57.?解:令t? 90 / 26
1dx 62x(1?x)1, x第三章 不定积分
t6?1?原式???2?dt???dt 21??t1?t????1?2??t?15131????t?t?t?arctant?C ????t4?t2?1?dt2?531?t????111111???arctan?C 5x53x3xxt6例3.58.?1?xdx 1?x1?x1?t21?x222解:令t?,解得:t?,t?xt?1?x,x?,则 21?x1?t1?xdx??4tdt 22(1?t)?4t2原式???dt22(1?t)t?tanu?4tan2u2??secudu 4secu??4?sin2udu??2?(1?cos2u)du??2u?sin2u?C。
(5)一些特殊积分 例3.59.?e2x(tanx?1)2dx
解:原式=?e2xsec2xdx?2?e2xtanxdx??e2xdtanx?2?e2xtanxdx =e2xtanx?2?e2xtanxdx?2?e2xtanxdx?e2xtanx?C
1x?1例3.60.?(1?x?)exdx
x1x?1解:原式=?edx??x(1?2)exdx
x1111x?x?x?x?1 =?exdx??xexd(x?)??exdx??xdex
xx?1x =?ex?1xdx?xex22x?1x??ex?1xdx?xex?1x?C
例3.61.?(x2?1)edx
解:原式=?xde??edx?xe??edx??edx?xe?C
91 / 26
x22x22x22x22x22x22第三章 不定积分
单元练习题3
1.?dcos2x? 。
2.已知f(cosx)?sin2x,则?f(x?1)dx? 。 3.
d?1?3tanxln(1?)dx?? 。 ??dx?x?h?04.已知?f(x)dx?1?x2?C,则limf(h)?f(?h)? 。
h5.已知?xf(x2)dx?xex,则f(x)? 。 6.下列积分谁正确( )
1a?1x?C?a为常数? B.?xsinx2dx??cos2x2?C A.?xadx?a?1111dx?ln3?2x?C D.?lnxdx??C C.?3?2x2x7.计算下列不定积分 (1)?1?3xdx
3
xearctxan(22) ?dx 3(1?x22)(23)?sin?lnx?dx (24)?e2xsin2xdx
arctanexdx (25)?xexdx (26)?2cosx(2)?(3)?1x(1?x)dx
arctanxdx
1?x21?x2dx (4) ?41?x
(5)?tan3xdx (6)?(7)?
11?e2xdx
xex(27)?dx
(1?x)2(28)?1dx
sinxcos4x1x(1?x)dx
92 / 26