第一课 8.1二元一次方程组
教学目标:
1.认识二元一次方程和二元一次方程组.
2.了解二元一次方程和二元一次方程组的解,会求二元一次方程的正整数解. 教学重点:
理解二元一次方程组的解的意义. 教学难点:
求二元一次方程的正整数解. 教学过程:
篮球联赛中,每场比赛都要分出胜负,每队胜一场得2分.负一场得1分,某队为了争取较好的名次,想在全部22场比赛中得到40分,那么这个队胜负场数分别是多少?
思考:
这个问题中包含了哪些必须同时满足的条件?设胜的场数是x,负的场数是y,你能用方程把这些条件表示出来吗?
由问题知道,题中包含两个必须同时满足的条件: 胜的场数+负的场数=总场数, 胜场积分+负场积分=总积分. 这两个条件可以用方程
x+y=22
2x+y=40 表示.
上面两个方程中,每个方程都含有两个未知数(x和y),并且未知数的指数都是1,像这样的方程叫做二元一次方程.
把两个方程合在一起,写成
x+y=22
2x+y=40
像这样,把两个二元一次方程合在一起,就组成了一个二元一次方程组. x y 探究:
满足方程①,且符合问题的实际意义的x、y的值有哪些?把它们填入表中. 上表中哪对x、y的值还满足方程②
一般地,使二元一次方程两边的值相等的两个未知数的值,叫做二元一次方程的解. 二元一次方程组的两个方程的公共解,叫做二元一次方程组的解.
例1 (1)方程(a+2)x +(b-1)y = 3是二元一次方程,试求a、b的取值范围. (2)方程x∣a∣ – 1+(a-2)y = 2是二元一次方程,试求a的值. 例2 若方程x2 m –1 + 5y3n – 2 = 7是二元一次方程.求m、n的值 例3 已知下列三对值:
x=-6 x=10 x=10 y=-9 y=-6 y=-1
1x-y=6的左、右两边的值相等? 21x-y=6
(2) 哪几对数值是方程组 2 的解?
2x+31y=-11
(1) 哪几对数值使方程
例4 求二元一次方程3x+2y=19的正整数解. 课堂练习: 教科书第102页练习 习题8.1 1、2题 作业:
教科书第102页3、4、5题
第二课 8.2消元(一)
教学目标:
1.会用代入法解二元一次方程组.
2.初步体会解二元一次方程组的基本思想――“消元”. 3.通过研究解决问题的方法,培养学生合作交流意识与探究精神. 重点:
用代入消元法解二元一次方程组. 难点:
探索如何用代入法将“二元”转化为“一元”的消元过程. 教学过程:
复习提问:
篮球联赛中,每场比赛都要分出胜负,每队胜一场得2分.负一场得1分,某队为了争取较好的名次,想在全部20场比赛中得到38分,那么这个队胜负场数分别是多少?
解:设这个队胜x场,根据题意得 2x?(20?x)?38 解得 x=18 则 20-x=2
答:这个队胜18场,负2场. 新课:
在上述问题中,我们可以设出两个未知数,列出二元一次方程组, 设胜的场数是x,负的场数是y, x+y=20 2x+y=38
那么怎样求解二元一次方程组呢?上面的二元一次方程组和一元一次方程有什么关系?可以发现,二元一次方程组中第1个方程x+y=20说明y=20-x,将第2个方程 2x+y=38的y换为20-x,这个方程就化为一元一次方程2x?(20?x)?38.
二元一次方程组中有两个未知数,如果消去其中一个未知数,将二元一次方程组转化为我们熟悉的一元一次方程,我们就可以先解出一个未知数,然后再设法求另一未知数.这种将未知数的个数由多化少、逐一解决的想法,叫做消元思想.
归纳:
上面的解法,是由二元一次方程组中一个方程,将一个未知数用含另一未知数的式子表示出来,再代入另一方程,实现消元,进而求得这个二元一次方程组的解.这种方法叫做代入消元法,简称代入法.
例1 把下列方程写成用含x的式子表示y的形式: (1)2x-y=3 (2)3x+y-1=0 例2 用代入法解方程组
x-y=3 ①
3x-8y=14 ②
例3 根据市场调查,某种消毒液的大瓶装(500g)和小瓶装(250g)两种产品的销售数量比(按瓶计算)为2:5.某厂每天生产这种消毒液22.5吨,这些消毒液应该分装大、小瓶装两种产品各多少瓶?
用代入消元法解二元一次方程组的步骤:
(1)从方程组中选取一个系数比较简单的方程,把其中的某一个未知数用含另一个未知数的式子表示出来.
(2)把(1)中所得的方程代入另一个方程,消去一个未知数. (3)解所得到的一元一次方程,求得一个未知数的值.
(4)把所求得的一个未知数的值代入(1)中求得的方程,求出另一个未知数的值,从而确定方程组的解.
课堂练习:
教科书第107页2、3、4题 作业:
教科书第111页第1题 第112页第2题
第三课 8.2 消元(二)(第二课时)
一、创设情境,导入新课
七年级(3)班在上体育课时,进行投篮比赛,体育老师做好记录,并统计了在规定时间内投进n个球的人数分布情况,体育委员在看统计表时,不慎将墨水沾到表格上(如下表).
进球数n 投进球的人数 0 1 1 2 2 7 3 ● 4 ● 5 2 同时,已知进球3个和3个以上的人平均每人投进3.5个球;进球4个和4?个以下的人平均每人投进2.5个球,你能把表格中投进3个球和投进4个球对应的人数补上吗? 二、师生互动,课堂探究 (一)指出问题,引发讨论
你能不能用二元一次方程组,帮助体育委员把表格中的两个数字补上呢? (经过学生思考、讨论、交流) (二)导入知识,解释疑难 1.例题讲解(见P109)
分析:如果1台大收割机和1台小收割机每小时各收割小麦x公顷和y公顷,?那么2台大收割机和5台小收割机1小时收割小麦______公顷,3台大收割机和2?台小收割机1小时收割小麦_______公顷. 解:设1台大收割机和1台小收割机1小时各收割小麦x公顷和y公顷.?根据两种工作方式中的相等
?2(2x?5y)?3.6关系,得方程组?
5(3x?2y)?8? 去括号,得??4x?10y?3.6
?15x?10y?8①② ②-①,得11x=4.4 解这个方程,得x=0.4 把x=0.4代入①,得y=0.2
?x?0.4 这个方程组的解是?
y?0.2? 答:1台大收割机和1台小收割机1小时各收割小麦0.4公顷和0.2公顷. 2.上面解方程组的过程可以用下面的框图表示: