13页练习 专插本高等数学

2018-11-27 10:08

第一章 函数、极限和连续

注:补充例题或习题已在题号前标注*

一、函数

?1,1?2例1(1)求函数f?x??ln?x?2??的定义域.(2)求函数f?x???1?x2x?1?3x?2,?例2设函数g?x??x?2,f??g?x????ln?x?2?,则f?1?? . 例3已知f?x??ln?1?x?,f????x????x,求??x?. 例4若??x?22?x?3的定义域.

?1???x??x?1,则??x?? . x例5已知f?x?的定义域为全体实数,f?x?1??x?x?1?,则f?x?1?? . 例6判断函数f?x??lgx??x2?1的奇偶性.

?二、极限

例1求下列各题的极限

x3?3x2?2xx2?1?12??1lim(1)lim.(2).(3)lim???.(4)xlim2x??2x?1x?1x?0???x2?x?6x?1sin2x2??例2设当x?0,1?ax2?1与sinx是等价无穷小,则a? . 例3当x?0时,下列变量与x为等价无穷小量的是( ). A.sin2x B.1?cosx C.1?x?1?x D.xsinx 例4求下列各题的极限 (1)lim2?x2?2x?x2?x.

?tan2xtanx?sinx.(2)lim.

x?0sin5xx?0sin3x1?12x例5求下列各题的极限

?1?(1)lim??x?01?x??x?x?2?.(2)lim??x???x?x1x3x?2?x?1?.(3)lim??x??x?1??x2x?42?x?a?.(4)lim??(其中a为常数). x??x?2a??x*例5求下列各题的极限 (1)lim??a?b?c?1?1?tanx?1?sinx?limcos.(2).(3). lim???x??2x?0x?0x3??x1?sinx?x??x

例6求下列各题的极限

sinxx2cosx(1)lim.(2)lim3.

x??x??x?x?1x 1

例7求lim?n???12?n?1?1n2?2?...???. 2n?n?1例8在下列函数中,当x?0时,函数f?x?极限存在的是( ).

?x?1,x?0?x??,x?0 B. f?x???xA.f?x???0,?x?1,x?0?1,???1?2?x,?x?0 C. f?x???0,?x?01?x?,2?x?0x?0 D.f?x??e x?01xa0xn?a1xn?1?...?an?1x?ann??12例9(1)lim?2?2?...?2?.(2)lim.

n??nx??bxm?bxm?1?...?bnnx?b??01m?1m(3)lim2sinn???nx1?cos2xlim.(4). nx?02xsin2xx2?kx?3x2?ax?b?4,求常数k的值.(6)已知lim2?2,求常数a,b的值. (5)已知limx?3x?2x?3x?x?2三、函数的连续性

?1?xsinx,?例1设函数f?x???k,?1?xsin?1,x??x?2,?2例2设函数f?x???x?a,?bx,?

x?0x?0在其定义域内连续,求常数k的值. x?0x?00?x?1在???,???上连续,求常数a,b的值. x?1x?00?x?1,讨论f?x?的间断点及其类型. 1?x?2?x2?1,?例3设函数f?x???x,?2?x,?例4求下列函数的间断点并说明间断点类型

x2?11?x?1?x2(1)f?x??2.(2)f?x??.

x?3x?22x例5证明方程4x?2在?0,?内至少有一个实根.

例6设f?x??e?2,求证f?x?在?0,2?内至少有一个点x0,使e0?2?x0.

xxx??1?2?第二章 一元函数微分学

2

一、导数与微分

例1设y?f?x?在x0处可导,则limh?0f?x0?2h??f?x0?? ; h?x?0limf?x0??x??f?x0??x?? .

?x例2求下列函数的导数

(1)y?1?lnx.(2)y?arctane.(3)y?sin2x?sec2(5)y?f??x???x???,其中f?u?及??x?均可导.

2x32?e?.(4)y?2x2?1nlnxx.

?、f??x?a?n?和?f?x?a??(6)已知f?u?可导,求?flnx?????????(7)设y?f??????.

??x?1?2?,f??x??arctanx,求y?x?0. ?x?1?1?sin2x(8)设f?x?为二阶可导函数,且f?tanx??,求f???x?.

cos2xx?0??x,例3函数f?x???在x?0处是否连续,是否可导,为什么?

ln1?x,x?0??????cosx,x???2例4设函数f?x???

??x??,x????22(1)f?x?在x?

?2

处是否可导?(2)若可导,求曲线过点????,0?处的切线、法线方程. 2???x2,x?1例5设函数f?x???在x?1处可导,求常数a,b的值.

?ax?b,x?1例6设曲线y?x?x?2上存在切线与直线y?4x?1平行,求切点.

2例7设函数y?f?x?由方程sinx?y?xy确定,求

3??dy. dx例8设函数y?f?x?由方程x?y?3xy?1确定,求

33dydx.

x?0x2例9设函数y?1?x

3x?2?x?2?2,求y?.

3

例10设函数y??sinx?,求y?.

例11(1)设y(n?2)?xcosx,求y(n).(2)设y?ln?1?x?,求y(n).

t??dy?x?ecostt?例12已知?,求当时的值. t3dx??y?esintx2?dyd2y?x?arctant*例12已知参数方程?,求和2. 2dxdx??y?1?ln?1?t?———————————————————————————————————————————————

练习题

1.已知函数y?f?x?在x?a处可导,求lim2.求下列函数的一阶导数

xxsinxlnx2ln(1)y?lnarcsinx?ln2.(2)y?.(3)y?2x.(4)y?arctanx?1?. 21?tanxx?1?x?0f?a?3?x??f?a?.

?x33.用对数求导法求下列函数的一阶导数 (1)y?1?x?2arcsinx??x?. (2)y??. 2?1?x??x4.求下列隐函数的一阶导数y? (1)y?1?xe. (2)eyx?y?cos?xy??0.

5.求下列函数的二阶导数y??

(1)y?lnx?1?x6.求下列函数的微分

?2?e?x. (2)y?.

x1?x22(1)y?arctan. (2)y?arcsin1?x,?x?0?. 21?x7.写出下列曲线在所给参数值相应的点处的切线方程和法线方程

3at?x???x?sint??1?t2(1)?,在t?处. (2)?,在t?2处. 24?y?cos2t?y?3at?1?t2?———————————————————————————————————————————————

4

二、导数的应用

例1不用求函数f?x???x?1??x?2??x?3??x?4?的导数,问方程f??x??0至少有几个实根,并指出其所在范围.

例2函数f?x??1?x在??1,1?上是否满足罗尔定理或拉格朗日定理.

32例3设函数y?f?x?在?a,b?上连续,在?a,b?内可导,且在任一点处的导数都不为零,又f?a??f?b??0, 试证:方程f?x??0在开区间?a,b?内有且仅有一个实根. 例4利用洛必达法则求下列极限

ex?1?xxm?am1??xx2lnx. lim(1)lim.(2).(3).(4)limlim???2nn?x?0sinxx?ax?ax?1x?1x?0lnx??例5求下列函数极限 (1)lim?1?2x??x?01xx2x.(2)lim?x?0sinx.(3)lim??x?2??. 2x??x?1??2?1?exsinx?sinx1?4?x(4)limx?e?1?.(5)limx?1?cos2?.(6)lim.

x??x?0x??1?cosxx????例6证明不等式

xx?ln?1?x??x,?x?0?.(2)?arctanx?x,?x?0?. 1?x1?x2a?baa?bn?1nnn?1?ln?,(a?b?0) *(3)nb?a?b??a?b?na?a?b?,(a?b?0,n?1).*(4)abb(1)

例7证明不等式e?1?x,x???1,0?.

x例8证明下列不等式 (1)lnx?2?x?1??1,?x?1?.(2)当0?x?时,sinx?tanx?2x.(3)当x?1时,2x?3?.

2xx?122?x例9求函数f?x??xe的单调区间和极值.

例10求函数y?x的凹凸区间和拐点. 21?x4例11求函数y?x?2x?10的驻点、拐点、凹凸区间、极值点、极值. 例12求函数y??x?1?x的凹凸性和拐点.

32例13求函数y?3?x2?2x?在?0,3?上的最值.

2例14求下列曲线的水平渐近线及铅垂渐近线 (1)y?

xxy??1. .(2)

1?x2ex5


13页练习 专插本高等数学.doc 将本文的Word文档下载到电脑 下载失败或者文档不完整,请联系客服人员解决!

下一篇:理论力学(机械工业出版社)第十一章动量矩定理习题解答

相关阅读
本类排行
× 注册会员免费下载(下载后可以自由复制和排版)

马上注册会员

注:下载文档有可能“只有目录或者内容不全”等情况,请下载之前注意辨别,如果您已付费且无法下载或内容有问题,请联系我们协助你处理。
微信: QQ: