目录
一.自动控制理论实验指导
1.概述........................................................1 2.实验一 典型环节的电路模拟与软件仿真研究.....................5 3.实验二 典型系统动态性能和稳定性分析.......................12 4.实验三 典型环节(或系统)的频率特性测量...................16 5.实验四 线性系统串联校正...................................21 6.实验五 典型非线性环节的静态特性...........................26 7.实验六 非线性系统相平面法.................................31 8.实验七 非线性系统描述函数法...............................37 9.实验八 极点配置全状态反馈控制.............................42 10.实验九 采样控制系统动态性能和稳定性分析的混合仿真研究....49 11.实验十 采样控制系统串联校正的混合仿真研究................53
二.自动控制理论对象实验指导
1.实验一 直流电机转速控制实验...............................57 2.实验二 温度控制实验.......................................60 3.实验三 水箱液位控制实验...................................62
三.自动控制理论软件说明
1.概 述......................................................64 2.安装指南及系统要求.........................................67 3.功能使用说明...............................................69 4.使用实例...................................................79
自动控制理论实验指导 概 述
一.实验系统功能特点
1.系统可以按教学需要组合,满足“自动控制原理”课程初级与高级实验的需要。只配备ACT-I实验箱,则实验时另需配备示波器,且只能完成部分基本实验。要完成与软件仿真、混合仿真有关的实验必须配备上位机(包含相应软件)及USB2.0通讯线。
2.ACT-I实验箱内含有实验必要的电源、信号发生器以及非线性与高阶电模拟单元,可根据教学实验需要进行灵活组合,构成各种典型环节与系统。此外,ACT-I实验箱内还可含有数据处理单元,用于数据采集、输出以及和上位机的通讯。
3.配备PC微机作操作台时,将高效率支持“自动控制原理”的教学实验。系统提供界面友好、功能丰富的上位机软件。PC微机在实验中,除了满足软件仿真需要外,又可成为测试所需的虚拟仪器、测试信号发生器以及具有很强柔性的数字控制器。
4.系统的硬件、软件设计,充分考虑了开放型、研究型实验的需要。除了指导书所提供的10个实验外,还可自行设计实验。
二.系统构成
实验系统由上位PC微机(含实验系统上位机软件)、ACT-I实验箱、USB2.0通讯线等组成。ACT-I实验箱内装有以C8051F060芯片(含数据处理系统软件)为核心构成的数据处理卡,通过USB口与PC微机连接。
1.实验箱ACT-I简介
ACT-I控制理论实验箱主要由电源部分U1单元、信号源部分U2单元、与PC机进行通讯的数据处理U3单元、 元器件单元U4、非线性单元U5~U7以及模拟电路单元U8~U16等共16个单元组成,详见附图。
(1) 电源单元U1
包括电源开关、保险丝、+5V、-5V、+15V、-15V、0V以及1.3V~15V可调电压的输出,它们提供了实验箱所需的所有工作电源。
(2) 信号源单元U2
可以产生频率与幅值可调的周期方波信号、周期斜坡信号、周期抛物线信号以及正弦信号,并提供与周期阶跃、斜坡、抛物线信号相配合的周期锁零信号。
该单元面板上配置的拨键S1和S2用于周期阶跃、斜坡、抛物线信号的频率段选择,可有以下4种状态:
①S1和S2均下拨——输出信号周期的调节范围为2~60ms;
-
1
自动控制理论实验指导 ②S1上拨、S2下拨——输出信号周期的调节范围为0.2~6s; ③S1下拨、S2上拨——输出信号周期的调节范围为20~600ms; ④S1和S2均上拨——输出信号周期的调节范围为0.16~7s; 另有电位器RP1用于以上频率微调。
电位器RP2、RP3和RP4依次分别用于周期阶跃、斜坡与抛物线信号的幅值调节。在上述S1和S2的4种状态下,阶跃信号的幅值调节范围均为0~14V;除第三种状态外,其余3种状态的斜坡信号和抛物线信号的幅值调节范围均为0~15V;在第三种状态时,斜坡信号的幅值调节范围为0~10V,抛物线信号的幅值调节范围为0~2.5V。
信号单元面板上的拨键S3用于正弦信号的频率段的选择:当S3上拨时输出频率范围为140Hz~14KHz;当S3下拨时输出频率范围为2~160Hz。电位器RP5和RP6分别用于正弦信号的频率微调和幅值调节,其幅值调节范围为0-14V。
(3) 数据处理单元U3
内含以C8051F060为核心组成的数据处理卡(含软件),通过USB口与上位PC进行通讯。内部包含八路A/D采集输入通道和两路D/A输出通道。与上位机一起使用时,可同时使用其中两个输入和两个输出通道。结合上位机软件,用以实现虚拟示波器、测试信号发生器以及数字控制器功能。
(4) 元器件单元U4
单元提供了实验所需的电容、电阻与电位器,另提供插接电路供放置自己选定大小的元器件。
(5) 非线性环节单元U5、U6和U7
U5,U6,U7分别用于构成不同的典型非线性环节。
单元U5可通过拨键S4选择具有死区特性或间隙特性的非线性环节模拟电路。 单元U6为具有继电特性的非线性环节模拟电路。 单元U7为具有饱和特性的非线性环节模拟电路。 (6) 模拟电路单元U8~U16
U8~U16为由运算放大器与电阻,电容等器件组成的模拟电路单元。其中U8为倒相电路,实验时通常用作反号器。U9~U16的每个单元内,都有用场效应管组成的锁零电路和运放调零电位器。
2.系统上位机软件的功能与使用方法,详见《ACT-I自动控制理论实验上位机程序使用说明书》。
三.自动控制理论实验系统实验内容
- 2
自动控制理论实验指导 1. 典型环节的电路模拟与软件仿真研究; 2. 典型系统动态性能和稳定性分析; 3. 典型环节(或系统)的频率特性测量; 4. 线性系统串联校正; 5. 典型非线性环节的静态特性; 6. 非线性系统相平面法; 7. 非线性系统描述函数法;
8. 极点配置线性系统全状态反馈控制;
9. 采样控制系统动态性能和稳定性分析的混合仿真研究; 10.采样控制系统串联校正的混合仿真研究。 要完成上列全部实验,必须配备上位计算机。
四.实验注意事项
1.实验前U9~U16单元内的运放需要调零。
2.运算放大器边上的锁零点G接线要正确。不需要锁零时(运放构成环节中不含电容或输入信号为正弦波时),必须把G与-15V相连;在需要锁零时,必须与其输入信号同步的锁零信号相连。如在采用PC产生的经D/A通道输出的信号O1作为该环节或系统的输入时,运放的锁零信号G应连U3单元的G1(对应O1);类似地,如采用PC产生的信号O2作输入,则锁零信号G应连U3单元的G2(对应O2)。锁零主要用于对电容充电后需要放电的场合,一般不需要锁零。
3.在设计和连接被控对象或系统的模拟电路时,要特别注意,实验箱上的运放都是反相输入的,因此对于整个系统以及反馈的正负引出点是否正确都需要仔细考虑,必要时接入反号器。
4.作频率特性实验和采样控制实验时,必须注意只用到其中1路A/D输入和1路D/A输出,具体采用“I1~I8”中哪一个通道,决定于控制箱上的实际连线。
5.上位机软件提供线性系统软件仿真功能。在作软件仿真时,无论是一个环节、或是几个环节组成的被控对象、或是闭环系统,在利用上位机界面作实验时,都必须将开环或闭环的传递函数都转化成下面形式,以便填入参数ai, bj
bmsm?bm?1sm?1?...?b1s?b0W(s)?ansn?an?1sn?1?...?a1s?a0
其中 n?10, m?n。
如出现 m?n的情况,软件仿真就会出错,必须设法避免。如实验一,在作理想比例
- 3
自动控制理论实验指导 微分(PD)环节的软件仿真实验时就会遇到此问题,因为此时W(s)?K(1?Ts)?K?KTs 可见该W(s)分子中s的阶高于分母的,直接填入参数仿真,即出现“非法操作”的提示。具体避免方法请参阅该实验附录。
6.受数据处理单元U3的数据处理速率限制,作频率特性实验和采样控制实验时,在上位机界面上操作“实验参数设置”必须注意频率点和采样控制频率的选择。对于频率特性实验,应满足ω<200/sec,以免引起过大误差。类似地,对于采样控制实验,采样控制周期应不小于5 ms。
7.本采集设备的上位机软件,A/D和D/A输出部分,需要注意的一些事项。本数据采集系统有8路A/D输入,2路D/A输出,对于8路A/D输入将其分为四组,因为一般我们用到两路同时输出或同时输入。I1、I2为一组A/D输入,I3、I4为一组A/D输入,I5、I6为一组A/D输入,I7、I8为一组A/D输入。在这四组A/D输入中,I1、I3、I5、I7为每组A/D输入中的第一路,I2、I4、I6、I8为每组A/D输入中的第二路。这个在实验三中,做频率特性实验要求比较严格,在每个实验当中,我们可以随意选择任一组A/D输入,和任一路D/A输出。
- 4